Friday Seminar Bias in SAG-like Variance Reduced Stochastic Gradient Methods

Martin Morin

October 9, 2020

Example Problems

$$
\min_x \frac{1}{n} \sum_{i=1}^n f_i(x) + g(x)
$$

- **NN** Classifiers: f_i is the composition of NN and cost
- ▶ Least Squares: $\frac{1}{n}\sum_{i=1}^{n}f_i(x) = \frac{1}{n}\sum_{i=1}^{n}(a_i^T x - b_i)^2 = \frac{1}{n}||Ax - b||_2^2$
- ▶ SVM: $f_i(x) = \max(0, 1 y_i(a_i^T x b_i))$ and $g(x) = ||x||_2^2$
- ▶ Logistic Regression: $f_i(x) = \ln(1 + e^{-y_i(a_i^T x b_i)})$

In all cases are *i* associated with a particular data point. The linear $\frac{1}{2}$ predictor/classifier $a_i^T x - b_i$ can be replaced by a nonlinear $h_i(x)$.

Fermat's Rule

$$
\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x) \iff 0 = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)
$$

Note: $\implies 0 = \nabla f_i(x)$

Martin Morin Bias in VRSG Methods Friday Seminar 2 / 222 / 223 / 224 / 224 / 225 / 226 / 227 / 2

Stochastic Gradient Descent

Sample *i* uniformly from *{*1*, ..., n}* $x_{k+1} = x_k - \lambda_k \nabla f_i(x_k)$

Unbiased: $\mathbb{E} \nabla f_i(x) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x)$

However: $x^* \neq x^* - \lambda_k \nabla f_i(x^*)$

Does not converge unless $\lambda_k \to 0.$

Slow convergence, not suitable for high-accuracy solutions.

Stochastic Gradient vs. Gradient Descent

Stochastic Variance Reduced Gradient Methods

SAG:

Sample *i* uniformly from
$$
\{1, ..., n\}
$$

\n
$$
y_{i,k+1} = \nabla f_i(x_k)
$$
\n
$$
y_{j,k+1} = y_{j,k}, \quad \forall j \neq i
$$
\n
$$
x_{k+1} = x_k - \lambda \frac{1}{n} \sum_{j=1}^n y_{j,k+1}
$$

SAGA:

Sample *i* uniformly from *{*1*, ..., n}* $x_{k+1} = x_k - \lambda (\nabla f_i(x_k) - y_{i,k} + \frac{1}{n} \sum_{j=1}^n y_{j,k})$ $y_{i,k+1} = \nabla f_i(x_k)$ $y_{j,k+1} = y_{j,k}, \quad \forall j \neq i$

Martin Morin Bias in VRSG Methods Friday Seminar 5 / 222 Semin

SVRG, S2GD,*. . .*

Stochastic Variance Adjusted Gradient Method (SVAG)

Sample *i* uniformly from
$$
\{1, ..., n\}
$$

\n
$$
x_{k+1} = x_k - \frac{\lambda}{n} (\theta(\nabla f_i(x_k) - y_{i,k}) + \sum_{i=1}^n y_{i,k})
$$
\n
$$
y_{i,k+1} = \nabla f_i(x_k)
$$
\n
$$
y_{j,k+1} = y_{j,k}, \quad \forall j \neq i
$$

SAG: $\theta = 1$ SAGA: $\theta = n$

At optimum with $y_i^* = \nabla f_i(x^*), \forall i$ then

$$
x^* = x^* - \frac{\lambda}{n} \left(\theta \underbrace{\left(\nabla f_i(x^*) - y_i^* \right)}_{=0} + \underbrace{\sum_{i=1}^n y_i^*}_{=0} \right).
$$

Possible to converge with fixed step-size.

Bias/Variance Trade-Off

Gradient Estimate:

$$
G_i(x, y) \coloneqq \frac{\theta}{n} \big(\nabla f_i(x) - y_i \big) + \frac{1}{n} \sum_{j=1}^n y_j
$$

Expectation:

$$
\mathbb{E} G_i(x, y) = \frac{\theta}{n^2} \sum_{j=1}^n \nabla f_j(x) + \frac{n-\theta}{n^2} \sum_{j=1}^n y_j
$$

Variance:

$$
\mathbb{E} || G_i(x, y) - \mathbb{E} G_i(x, y) ||^2
$$

= $\frac{\theta^2}{n^2} \mathbb{E} || (\nabla f_i(x) - y_i) - \frac{1}{n} \sum_{j=1}^n (\nabla f_j(x) - y_j) ||^2$

Unbiased when $\theta = n$. Smaller θ , smaller variance. Zero variance in (x^*, y^*) .

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- ▶ Can we design ways of selecting the bias?

Current state

- ▶ Both SAG and SAGA are well used but neither having no clear advantage.
- ▶ Unbiased theory well developed and matching practice.
- ▶ Biased theory behind practice.

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- ▶ Can we design ways of selecting the bias?

Current state

- ▶ Both SAG and SAGA are well used but neither having no clear advantage.
- ▶ Unbiased theory well developed and matching practice.
- ▶ Biased theory behind practice.

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- ▶ Can we design ways of selecting the bias?

Current state

- ▶ Both SAG and SAGA are well used but neither having no clear advantage.
- ▶ Unbiased theory well developed and matching practice.
- ▶ Biased theory behind practice.

SVAG - Root Finding Version

Problem:

$$
0 = \frac{1}{n} \sum_{i=1}^{n} R_i x
$$

where $R_i: \mathcal{H} \to \mathcal{H}$.

Algorithm:

Sample *i* uniformly from *{*1*, ..., n}* $x_{k+1} = x_k - \frac{\lambda}{n}(\theta(R_ix_k - y_{i,k}) + \sum_{i=1}^n y_{i,k})$ $y_{i,k+1} = R_i x_k$ *y*_{*j*},*k*₊₁ = *y*_{*j*},*k*, $\forall j \neq i$

 $R_i = \nabla f_i$ gives the minimization formulation.

Properties

An operator $R:\mathbb{R}^N\rightarrow\mathbb{R}^N$ is β **-cocoercive** if

$$
\langle Rx - Ry, x - y \rangle \ge \beta ||Rx - Ry||^2
$$

holds for all $x, y \in \mathbb{R}^N$.

A convex function $f\colon\mathbb{R}^N\to\mathbb{R}$ is called L **-smooth** if the gradient is *L*-Lipschitz continuous,

$$
\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.
$$

The gradient of a *L*-smooth function is $\frac{1}{L}$ -cocoercive.

Cocoercivity vs. Gradients of Smooth Functions

Class of cocoercive operator larger than the class of smooth gradients

However, "gradient descent",

$$
x_{k+1} = x_k - \lambda R x_k,
$$

behaves the "same", i.e.,

 $Rx_k \to 0$

with same rate for same *λ*, regardless if *R* is gradient of smooth function or only cocoercive.

Is the same true for SAGA? SAG? SVAG?

Martin Morin Bias in VRSG Methods Friday Semina

Convergence Theorems

Theorem

Let each R_i be $\frac{1}{L}$ -cocoercive. If

$$
\frac{1}{L(2+|n-\theta|)} > \lambda > 0,
$$

then $x^k \to x^*$ *and* $y_i^k \to \nabla f_i(x^*)$ *almost surely.*

Theorem

Let each $R_i = \nabla f_i$ *where* f_i *is convex and L-smooth. If* $\theta \leq n$ *and*

$$
\frac{1}{L}\frac{1}{2+(1-\frac{\theta}{n})(\theta-1)(\frac{\theta-1}{n}-1+\frac{\theta-1}{|\theta-1|}\sqrt{2})} > \lambda > 0,
$$

then $x^k \to x^*$ *and* $y_i^k \to \nabla f_i(x^*)$ *almost surely.*

Improves or equals the known upper bounds.

For $\theta \neq n$, cocoercivity $\lambda < O(\frac{1}{n})$ while smoothness $\lambda < O(1)$.

Special Cases

SAGA: For both cocoercivity and smoothness assumptions,

$$
\frac{1}{2L} > \lambda > 0.
$$

SAG: For cocoercivity and smoothness assumptions respectively,

$$
\frac{1}{(2+n-1)L} > \lambda > 0, \quad \frac{1}{2L} > \lambda > 0.
$$

Only the same when $n = 1$, i.e., ordinary gradient descent.

Tight Convergence Results

Cocoercivity: Empirical. **Smoothness:** ???

Example: Each $R_i: \mathbb{R}^2 \to \mathbb{R}^2$ is an averaged rotation,

$$
R_i = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \cos \tau & -\sin \tau \\ \sin \tau & \cos \tau \end{bmatrix}
$$

for some $\tau \in [0^\circ, 360^\circ)$.

Each R_i is 1-cocoercive and zero is the only solution if $\tau \neq 180\deg.$

The results appear tight as $\tau \to 180^\circ$.

Tight Example

Tight Example

Automatic Bias Selection

Goal: Make the approximation,

$$
\nabla F(x_k) \approx \frac{\theta}{n} \big(\nabla f_i(x_k) - y_{i,k} \big) + \frac{1}{n} \sum_{j=1}^n y_{j,k},
$$

as good as possible.

Hence,

$$
\min_{\theta} \|\nabla F(x_k) - \left(\frac{\theta}{n}(\nabla f_i(x_k) - y_{i,k}) + \frac{1}{n}\sum_{i=1}^n y_{i,k}\right)\|^2.
$$

Automatic Bias Selection

Solution

$$
\theta = n \frac{\langle \nabla F(x_k) - \frac{1}{n} \sum_{i=1}^n y_{i,k}, \nabla f_i(x_k) - y_{i,k} \rangle}{\|\nabla f_i(x_k) - y_{i,k}\|^2}
$$

Total innovation

$$
\nabla F(x_k) - \frac{1}{n} \sum_{i=1}^n y_{i,k} = \mathbb{E}[\nabla f_i(x_k) - y_{i,k}]
$$

Estimate with exponential moving average of $\nabla f_i(x_k) - y_{i,k}$.

Adaptive SVAG

Sample *i* uniformly from *{*1*, ..., n}* $I_{k+1} = \beta I_k + (1 - \beta)(\nabla f_i(x_k) - y_{i,k})$

$$
\begin{aligned}\n\theta_{k+1} &= \beta x_k + (1 - \beta)(\sqrt{x_j} \cos \theta, \quad y_{i,k}) \\
\theta_{k+1} &= \text{saturate}_{-\delta}^{\delta} \left(\frac{n}{1 - \beta^{k+1}} \frac{\langle I_{k+1}, \nabla f_i(x_k) - y_{i,k} \rangle}{\|\nabla f_i(x_k) - y_{i,k}\|^2 + \epsilon} \right) \\
x_{k+1} &= x_k - \frac{\lambda}{n} \left(\theta_{k+1} (\nabla f_i(x_k) - y_{i,k}) + \sum_{i=1}^n y_{i,k} \right) \\
y_{i,k+1} &= \nabla f_i(x_k) \\
y_{j,k+1} &= y_{j,k}, \quad \forall j \neq i\n\end{aligned}
$$

where $\beta \in [0, 1]$, $\epsilon > 0$, $\delta \ge 0$ and $I_0 = 0$.

Default choice: $\beta = 0.9$, $\epsilon = 10^{-8}$ and $\delta = n$.

Logistic Regression

 $\min_x \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i a_i^T x})$

Logistic Regression

Martin Morin Bias in VRSG Methods Friday Seminar 20 / 22

Square Hinge Loss SVM

Square Hinge Loss SVM

Conclusion?

