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Example Problems

min
x

1
n

∑n

i=1
fi(x)+g(x)

▶ NN Classifiers:
fi is the composition of NN and cost

▶ Least Squares:
1
n
∑n

i=1 fi(x) = 1
n
∑n

i=1(aT
i x − bi)2 =

1
n∥Ax − b∥22

▶ SVM: fi(x) = max(0, 1− yi(aT
i x − bi)) and g(x) = ∥x∥22

▶ Logistic Regression: fi(x) = ln(1 + e−yi(aT
i x−bi))

In all cases are i associated with a particular data point. The linear
predictor/classifier aT

i x − bi can be replaced by a nonlinear hi(x).
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Fermat's Rule

min
x

1
n

∑n

i=1
fi(x) ⇐⇒ 0 = 1

n

∑n

i=1
∇fi(x)

Note: ≠⇒ 0 = ∇fi(x)
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Stochastic Gradient Descent

Sample i uniformly from {1, ...,n}
xk+1 = xk − λk∇fi(xk)

Unbiased: E∇fi(x) = 1
n
∑n

i=1∇fi(x)

However: x⋆ ̸= x⋆ − λk∇fi(x⋆)

Does not converge unless λk → 0.

Slow convergence, not suitable for high-accuracy solutions.
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Stochastic Gradient vs. Gradient Descent
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Stochastic Variance Reduced Gradient Methods

SAG:

Sample i uniformly from {1, ...,n}
yi,k+1 = ∇fi(xk)

yj,k+1 = yj,k, ∀j ̸= i
xk+1 = xk − λ 1

n
∑n

j=1yj,k+1

SAGA:

Sample i uniformly from {1, ...,n}
xk+1 = xk − λ(∇fi(xk)− yi,k +

1
n
∑n

j=1yj,k)

yi,k+1 = ∇fi(xk)

yj,k+1 = yj,k, ∀j ̸= i

SVRG, S2GD,. . .
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Stochastic Variance Adjusted Gradient Method (SVAG)

Sample i uniformly from {1, ...,n}
xk+1 = xk − λ

n
(
θ(∇fi(xk)− yi,k) +

∑n
i=1yi,k

)
yi,k+1 = ∇fi(xk)

yj,k+1 = yj,k, ∀j ̸= i

SAG: θ = 1
SAGA: θ = n

At optimum with y⋆i = ∇fi(x⋆),∀i then

x⋆ = x⋆ − λ
n
(
θ (∇fi(x⋆)− y⋆i )︸ ︷︷ ︸

=0

+
∑n

i=1 y⋆i︸ ︷︷ ︸
=0

)
.

Possible to converge with fixed step-size.
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SG vs. GD vs. SAGA
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Bias/Variance Trade-Off

Gradient Estimate:

Gi(x, y) := θ
n
(
∇fi(x)− yi

)
+ 1

n

∑n

j=1
yj

Expectation:

EGi(x, y) = θ
n2

∑n

j=1
∇fj(x) + n−θ

n2

∑n

j=1
yj

Variance:

E∥Gi(x, y)− EGi(x, y)∥2

= θ2

n2 E ∥(∇fi(x)− yi)− 1
n
∑n

j=1(∇fj(x)− yj)∥2

Unbiased when θ = n. Smaller θ, smaller variance. Zero variance in (x⋆, y⋆).
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Main Question

How does bias affect the algorithm?
▶ What properties affect how the bias should be chosen?
▶ Can we design ways of selecting the bias?

Current state
▶ Both SAG and SAGA are well used but neither having no

clear advantage.
▶ Unbiased theory well developed and matching practice.
▶ Biased theory behind practice.
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SVAG - Root Finding Version

Problem:

0 = 1
n

∑n

i=1
Rix

where Ri : H → H.

Algorithm:

Sample i uniformly from {1, ...,n}
xk+1 = xk − λ

n
(
θ(Rixk − yi,k) +

∑n
i=1yi,k

)
yi,k+1 = Rixk

yj,k+1 = yj,k, ∀j ̸= i

Ri = ∇fi gives the minimization formulation.
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Properties

An operator R : RN → RN is β-cocoercive if

⟨Rx − Ry, x − y⟩ ≥ β∥Rx − Ry∥2

holds for all x, y ∈ RN.

A convex function f : RN → R is called L-smooth if the
gradient is L-Lipschitz continuous,

∥∇f(x)−∇f(y)∥ ≤ L∥x − y∥.

The gradient of a L-smooth function is 1
L -cocoercive.
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Cocoercivity vs. Gradients of Smooth Functions

Class of cocoercive operator larger than the class of smooth
gradients

However, “gradient descent”,

xk+1 = xk − λRxk,

behaves the “same”, i.e.,

Rxk → 0

with same rate for same λ, regardless if R is gradient of
smooth function or only cocoercive.

Is the same true for SAGA? SAG? SVAG?
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Convergence Theorems

Theorem
Let each Ri be 1

L -cocoercive. If

1

L(2 + |n − θ|) > λ > 0,

then xk → x⋆ and yk
i → ∇fi(x⋆) almost surely.

Theorem
Let each Ri = ∇fi where fi is convex and L-smooth. If θ ≤ n and

1

L
1

2 + (1− θ
n )(θ − 1)( θ−1

n − 1 + θ−1
|θ−1|

√
2)

> λ > 0,

then xk → x⋆ and yk
i → ∇fi(x⋆) almost surely.

Improves or equals the known upper bounds.

For θ ̸= n, cocoercivity λ < O( 1
n ) while smoothness λ < O(1).
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Special Cases

SAGA: For both cocoercivity and smoothness assumptions,

1

2L > λ > 0.

SAG: For cocoercivity and smoothness assumptions
respectively,

1

(2 + n − 1)L > λ > 0,
1

2L > λ > 0.

Only the same when n = 1, i.e., ordinary gradient descent.
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Tight Convergence Results

Cocoercivity: Empirical.
Smoothness: ???

Example: Each Ri : R2 → R2 is an averaged rotation,

Ri =
1

2

[
1 0
0 1

]
+

1

2

[
cos τ − sin τ
sin τ cos τ

]
for some τ ∈ [0◦, 360◦).

Each Ri is 1-cocoercive and zero is the only solution if
τ ̸= 180 deg.

The results appear tight as τ → 180◦.
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Tight Example

0.0 0.5 1.0 1.5 2.0

10−2.0

10−1.0

100.0

θ/n

λ
L

λL = (2 + |n− θ|)−1 −10

0

10 log
1
0 (‖x

1
0
0
n‖

/‖
x
0‖
)

τ = 179◦ and n = 100
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Tight Example
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Automatic Bias Selection

Goal: Make the approximation,

∇F(xk) ≈ θ
n
(
∇fi(xk)− yi,k

)
+ 1

n

∑n

j=1
yj,k,

as good as possible.

Hence,

min
θ

∥∇F(xk)−
(
θ
n(∇fi(xk)− yi,k) +

1
n
∑n

i=1yi,k
)
∥2.
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Automatic Bias Selection

Solution

θ = n
⟨∇F(xk)− 1

n
∑n

i=1 yi,k,∇fi(xk)− yi,k⟩
∥∇fi(xk)− yi,k∥2

Total innovation

∇F(xk)− 1
n
∑n

i=1 yi,k = E[∇fi(xk)− yi,k]

Estimate with exponential moving average of ∇fi(xk)− yi,k.
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Adaptive SVAG

Sample i uniformly from {1, ...,n}
Ik+1 = βIk + (1− β)(∇fi(xk)− yi,k)

θk+1 = saturateδ−δ

(
n

1−βk+1

⟨Ik+1,∇fi(xk)−yi,k⟩
∥∇fi(xk)−yi,k∥2+ϵ

)
xk+1 = xk − λ

n
(
θk+1(∇fi(xk)− yi,k) +

∑n
i=1yi,k

)
yi,k+1 = ∇fi(xk)

yj,k+1 = yj,k, ∀j ̸= i

where β ∈ [0, 1], ϵ > 0, δ ≥ 0 and I0 = 0.

Default choice: β = 0.9, ϵ = 10−8 and δ = n.
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Logistic Regression

minx
1
n
∑n

i=1 log(1 + e−yiaT
i x)
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Logistic Regression
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1
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Square Hinge Loss SVM

minx
1
n
∑n

i=1

(
max(0, 1− yiaT

i x)2 + γ
2∥x∥2

)
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Square Hinge Loss SVM

minx
1
n
∑n

i=1

(
max(0, 1− yiaT

i x)2 + γ
2∥x∥2

)
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Conclusion?
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