Friday Seminar Bias in SAG-like Variance Reduced Stochastic Gradient Methods

Martin Morin October 9, 2020

Example Problems

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + g(x)$$

- ► NN Classifiers: f_i is the composition of NN and cost
- ► Least Squares:

$$\frac{1}{n} \sum_{i=1}^{n} f_i(x) = \frac{1}{n} \sum_{i=1}^{n} (a_i^T x - b_i)^2 = \frac{1}{n} ||Ax - b||_2^2$$

- ▶ SVM: $f_i(x) = \max(0, 1 y_i(a_i^T x b_i))$ and $g(x) = ||x||_2^2$
- ▶ Logistic Regression: $f_i(x) = \ln(1 + e^{-y_i(a_i^T x b_i)})$

In all cases are i associated with a particular data point. The linear predictor/classifier $a_i^Tx-b_i$ can be replaced by a nonlinear $h_i(x)$.

Fermat's Rule

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x) \iff 0 = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)$$

Note: $\implies 0 = \nabla f_i(x)$

Stochastic Gradient Descent

Sample
$$i$$
 uniformly from $\{1, ..., n\}$
$$x_{k+1} = x_k - \lambda_k \nabla f_i(x_k)$$

Unbiased: $\mathbb{E} \nabla f_i(x) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x)$

However: $x^* \neq x^* - \lambda_k \nabla f_i(x^*)$

Does not converge unless $\lambda_k \to 0$.

Slow convergence, not suitable for high-accuracy solutions.

Stochastic Gradient vs. Gradient Descent

Stochastic Variance Reduced Gradient Methods

SAG:

Sample
$$i$$
 uniformly from $\{1,...,n\}$
$$y_{i,k+1} = \nabla f_i(x_k)$$

$$y_{j,k+1} = y_{j,k}, \quad \forall j \neq i$$

$$x_{k+1} = x_k - \lambda \frac{1}{n} \sum_{j=1}^n y_{j,k+1}$$

SAGA:

Sample
$$i$$
 uniformly from $\{1,...,n\}$
$$x_{k+1} = x_k - \lambda(\nabla f_i(x_k) - y_{i,k} + \frac{1}{n} \sum_{j=1}^n y_{j,k})$$

$$y_{i,k+1} = \nabla f_i(x_k)$$

$$y_{j,k+1} = y_{j,k}, \quad \forall j \neq i$$

SVRG, S2GD,...

Stochastic Variance Adjusted Gradient Method (SVAG)

Sample
$$i$$
 uniformly from $\{1,...,n\}$
$$x_{k+1} = x_k - \frac{\lambda}{n} \left(\theta(\nabla f_i(x_k) - y_{i,k}) + \sum_{i=1}^n y_{i,k} \right)$$

$$y_{i,k+1} = \nabla f_i(x_k)$$

$$y_{i,k+1} = y_{i,k}, \quad \forall j \neq i$$

SAG:
$$\theta = 1$$

SAGA: $\theta = n$

At optimum with $y_i^{\star} = \nabla f_i(x^{\star}), \forall i$ then

$$x^* = x^* - \frac{\lambda}{n} \left(\theta \underbrace{\left(\nabla f_i(x^*) - y_i^* \right)}_{=0} + \underbrace{\sum_{i=1}^n y_i^*}_{=0} \right).$$

Possible to converge with fixed step-size.

SG vs. GD vs. SAGA

Bias/Variance Trade-Off

Gradient Estimate:

$$G_i(x, y) := \frac{\theta}{n} (\nabla f_i(x) - y_i) + \frac{1}{n} \sum_{j=1}^n y_j$$

Expectation:

$$\mathbb{E} G_i(x,y) = \frac{\theta}{n^2} \sum_{j=1}^n \nabla f_j(x) + \frac{n-\theta}{n^2} \sum_{j=1}^n y_j$$

Variance:

$$\mathbb{E} \|G_i(x, y) - \mathbb{E} G_i(x, y)\|^2$$

$$= \frac{\theta^2}{n^2} \mathbb{E} \|(\nabla f_i(x) - y_i) - \frac{1}{n} \sum_{j=1}^n (\nabla f_j(x) - y_j)\|^2$$

Unbiased when $\theta=n$. Smaller θ , smaller variance. Zero variance in (x^\star,y^\star) .

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- Can we design ways of selecting the bias?

Current state

- ▶ Both SAG and SAGA are well used but neither having no clear advantage.
- Unbiased theory well developed and matching practice.
- Biased theory behind practice.

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- ► Can we design ways of selecting the bias?

Current state

- Both SAG and SAGA are well used but neither having no clear advantage.
- Unbiased theory well developed and matching practice.
- ▶ Biased theory behind practice.

Main Question

How does bias affect the algorithm?

- ▶ What properties affect how the bias should be chosen?
- Can we design ways of selecting the bias?

Current state

- Both SAG and SAGA are well used but neither having no clear advantage.
- ▶ Unbiased theory well developed and matching practice.
- ► Biased theory behind practice.

SVAG - Root Finding Version

Problem:

$$0 = \frac{1}{n} \sum_{i=1}^{n} R_i x$$

where $R_i: \mathcal{H} \to \mathcal{H}$.

Algorithm:

Sample
$$i$$
 uniformly from $\{1,...,n\}$
$$x_{k+1} = x_k - \frac{\lambda}{n} \left(\theta(R_i x_k - y_{i,k}) + \sum_{i=1}^n y_{i,k} \right)$$

$$y_{i,k+1} = R_i x_k$$

$$y_{j,k+1} = y_{j,k}, \quad \forall j \neq i$$

 $R_i = \nabla f_i$ gives the minimization formulation.

Properties

An operator $R:\mathbb{R}^N \to \mathbb{R}^N$ is β -cocoercive if

$$\langle Rx - Ry, x - y \rangle \ge \beta ||Rx - Ry||^2$$

holds for all $x, y \in \mathbb{R}^N$.

A convex function $f: \mathbb{R}^N \to \mathbb{R}$ is called *L*-smooth if the gradient is *L*-Lipschitz continuous,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

The gradient of a L-smooth function is $\frac{1}{L}$ -cocoercive.

Cocoercivity vs. Gradients of Smooth Functions

Class of cocoercive operator larger than the class of smooth gradients

However, "gradient descent",

$$x_{k+1} = x_k - \lambda R x_k,$$

behaves the "same", i.e.,

$$Rx_k \to 0$$

with same rate for same λ , regardless if R is gradient of smooth function or only cocoercive.

Is the same true for SAGA? SAG? SVAG?

Convergence Theorems

Theorem

Let each R_i be $\frac{1}{L}$ -cocoercive. If

$$\frac{1}{L(2+|n-\theta|)} > \lambda > 0,$$

then $x^k \to x^\star$ and $y_i^k \to \nabla f_i(x^\star)$ almost surely.

Theorem

Let each $R_i = \nabla f_i$ where f_i is convex and L-smooth. If $\theta \leq n$ and

$$\frac{1}{L}\frac{1}{2+(1-\frac{\theta}{n})(\theta-1)(\frac{\theta-1}{n}-1+\frac{\theta-1}{|\theta-1|}\sqrt{2})}>\lambda>0,$$

then $x^k \to x^*$ and $y_i^k \to \nabla f_i(x^*)$ almost surely.

Improves or equals the known upper bounds.

For $\theta \neq n$, cocoercivity $\lambda < O(\frac{1}{n})$ while smoothness $\lambda < O(1)$.

Special Cases

SAGA: For both cocoercivity and smoothness assumptions,

$$\frac{1}{2L} > \lambda > 0.$$

SAG: For cocoercivity and smoothness assumptions respectively,

$$\frac{1}{(2+n-1)L} > \lambda > 0, \quad \frac{1}{2L} > \lambda > 0.$$

Only the same when n=1, i.e., ordinary gradient descent.

Tight Convergence Results

Cocoercivity: Empirical.

Smoothness: ???

Example: Each $R_i: \mathbb{R}^2 \to \mathbb{R}^2$ is an averaged rotation,

$$R_i = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \cos \tau & -\sin \tau \\ \sin \tau & \cos \tau \end{bmatrix}$$

for some $\tau \in [0^\circ, 360^\circ)$.

Each R_i is 1-cocoercive and zero is the only solution if $\tau \neq 180 \deg$.

The results appear tight as $au o 180^\circ.$

Tight Example

Martin Morin Bias in VRSG Methods Friday Seminar

Tight Example

Martin Morin Bias in VRSG Methods

Automatic Bias Selection

Goal: Make the approximation,

$$\nabla F(x_k) \approx \frac{\theta}{n} (\nabla f_i(x_k) - y_{i,k}) + \frac{1}{n} \sum_{i=1}^n y_{j,k},$$

as good as possible.

Hence,

$$\min_{\theta} \|\nabla F(x_k) - \left(\frac{\theta}{n}(\nabla f_i(x_k) - y_{i,k}) + \frac{1}{n}\sum_{i=1}^n y_{i,k}\right)\|^2.$$

Automatic Bias Selection

Solution

$$\theta = n \frac{\langle \nabla F(x_k) - \frac{1}{n} \sum_{i=1}^{n} y_{i,k}, \nabla f_i(x_k) - y_{i,k} \rangle}{\|\nabla f_i(x_k) - y_{i,k}\|^2}$$

Total innovation

$$\nabla F(x_k) - \frac{1}{n} \sum_{i=1}^{n} y_{i,k} = \mathbb{E}[\nabla f_i(x_k) - y_{i,k}]$$

Estimate with exponential moving average of $\nabla f_i(x_k) - y_{i,k}$.

Adaptive SVAG

Sample
$$i$$
 uniformly from $\{1,...,n\}$

$$I_{k+1} = \beta I_k + (1 - \beta)(\nabla f_i(x_k) - y_{i,k})$$

$$\theta_{k+1} = \text{saturate}_{-\delta}^{\delta} \left(\frac{n}{1 - \beta^{k+1}} \frac{\langle I_{k+1}, \nabla f_i(x_k) - y_{i,k} \rangle}{\|\nabla f_i(x_k) - y_{i,k}\|^2 + \epsilon} \right)$$

$$x_{k+1} = x_k - \frac{\lambda}{n} \left(\theta_{k+1}(\nabla f_i(x_k) - y_{i,k}) + \sum_{i=1}^n y_{i,k} \right)$$

$$y_{i,k+1} = \nabla f_i(x_k)$$

$$y_{i,k+1} = y_{i,k}, \quad \forall j \neq i$$

where $\beta \in [0, 1]$, $\epsilon > 0$, $\delta > 0$ and $I_0 = 0$.

Default choice: $\beta = 0.9$, $\epsilon = 10^{-8}$ and $\delta = n$.

Martin Morin Bias in VRSG Methods

Logistic Regression

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i a_i^T x})$$

Martin Morin Bias in VRSG Methods Friday Seminar

Logistic Regression

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i a_i^T x})$$

protein

mnist.scale

Square Hinge Loss SVM

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} \left(\max(0, 1 - y_i a_i^T x)^2 + \frac{\gamma}{2} ||x||^2 \right)$$

Martin Morin Bias in VRSG Methods Friday Seminar

Square Hinge Loss SVM

$$\min_x \frac{1}{n} \sum_{i=1}^n \left(\max(0, 1 - y_i a_i^T x)^2 + \frac{\gamma}{2} \|x\|^2 \right)$$

 $\begin{array}{l} {\rm protein,} \\ \gamma = 10^{-3} \end{array}$

mnist.scale, $\gamma = 10^{-1}$

Conclusion?

