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Example Problems

min Y7 fia) (o)

> NN Classifiers:
fi is the composition of NN and cost

> Least Squares:

5 i fim) = 5 o (af e —0)* = J || Az — b3
> SVM: fi(z) = max(0, 1 — yi(alz— b;)) and g(z) = ||=])3
> Logistic Regression: fi(z) = In(1 + e*yi(“iTI*bi))

In all cases are 7 associated with a particular data point. The linear
predictor/classifier alz — b; can be replaced by a nonlinear h;(z).
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Fermat's Rule

min Y7 fi(a) <= 0=13"" V()
Note: =& 0= Vfi(x)
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Stochastic Gradient Descent

Sample ¢ uniformly from {1, ..., n}

Trp1 = T — A\ VSi(k)

Unbiased: E Vf;(z) = 1 37 | Vfi(2)
However: z* # o — A\, Vfi(z*)
Does not converge unless Ay — 0.

Slow convergence, not suitable for high-accuracy solutions.
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Stochastic Gradient vs. Gradient Descent
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Stochastic Variance Reduced Gradient Methods

SAG:
Sample ¢ uniformly from {1, ..., n}
Yikr1 = Vi)
Yikt1 = Yiky VIF 1
Te1 = Tk — Ay Y0 Uik
SAGA:
Sample ¢ uniformly from {1, ..., n}
Thp1 = 2 — MV i) — Yk + 5 D71 Yik)
Yik+1 = Vi)
Yik+1 = Yiky VIF 0
SVRG, S2GD,...
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Stochastic Variance Adjusted Gradient Method (SVAG)

Sample ¢ uniformly from {1, ..., n}

Tpt1 = Tp — %(G(sz'(ﬂ?k) — Yik) + Z?:ﬂ/i,k)
Yikr1 = Vfi(zr)
Yiktl = Yjks ViF i

SAG: =1
SAGA: 0 =n
At optimum with yf = Vfi(2*), Vi then
=" = (0 (V") = y0) + i 47 )-
\_;6_/ \_;,O_/

Possible to converge with fixed step-size.
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SG vs. GD vs. SAGA
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Bias/Variance Trade-Off

Gradient Estimate:

Gilw,y) = 5 (VA —w) + 5> v
Expectation:

ECir.y) =y | Vi) + 5

n

=14

Variance:

E|| Gi(z,y) — E Gi(z, )|
= LR|(VA) — y) — L S0 (Vi) — w)?

Unbiased when 6 = n. Smaller 0, smaller variance. Zero variance in (z*, y*).
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Main Question

How does bias affect the algorithm?
> What properties affect how the bias should be chosen?
» Can we design ways of selecting the bias?

Current state

» Both SAG and SAGA are well used but neither having no
clear advantage.

» Unbiased theory well developed and matching practice.

> Biased theory behind practice.

=
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SVAG - Root Finding Version

Problem:

0= % Zi:l Ri:c
where R;: H — H.

Algorithm:

Sample ¢ uniformly from {1, ..., n}

1 = a5 — 2 (O(Riwg — yig) + b1 Yik)
Yik+1 = Rixy
Yikt1 = Yk ViF

R; = Vf; gives the minimization formulation.
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Properties

An operator R : RY — RV is 5-cocoercive if
(Rz— Ry,x— y) > B|| Rz — Ry|*

holds for all z,y € RY.

A convex function f: RV — R is called L-smooth if the
gradient is L-Lipschitz continuous,

IVf(z) = VYl < Lllz— yll

The gradient of a L-smooth function is %—cocoercive.

=
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Cocoercivity vs. Gradients of Smooth Functions

Class of cocoercive operator larger than the class of smooth
gradients

However, “gradient descent”,
Tpr1 = Tp — ARy,
behaves the “same”, i.e.,
Rz, — 0

with same rate for same A, regardless if R is gradient of
smooth function or only cocoercive.

Is the same true for SAGA? SAG? SVAG?

=
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Convergence Theorems

Let each R; be }-cocoercive. If

1

— > A >0,
L(2+ |n—0])

then z* — z* and yf — Vfi(z*) almost surely.

Let each R; = Vf; where f; is convex and L-smooth. If 0 < n and
1 1

>A>0,

Lo+ (1-9)0-1)(EL -1+ 55Vv2)

then z* — x* and yf — Vfi(z*) almost surely.

Improves or equals the known upper bounds.

For 6 # n, cocoercivity A < O() while smoothness A < O(1).
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Special Cases

SAGA: For both cocoercivity and smoothness assumptions,

1
— > A .
2L> >0

SAG: For cocoercivity and smoothness assumptions
respectively,

1

1
S50, = >A>0.
Crn-nL "7 2"

2L

Only the same when n =1, i.e., ordinary gradient descent.

=
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Tight Convergence Results

Cocoercivity: Empirical.
Smoothness: 777

Example: Each R;: R? — R? is an averaged rotation,

1 O] 1 |:COST —sin T:|
2

1
Ri= 2 [O 1 sint cosT
for some 7 € [0°,360°).

Each R; is 1-cocoercive and zero is the only solution if
7 # 180 deg.

The results appear tight as 7 — 180°.

<)
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Tight Example
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Tight Example
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Automatic Bias Selection

Goal: Make the approximation,

n

VF(z) ~ &(Vfi(z) — yir) + %ijl Yjks

as good as possible.

Hence,

min IV F(z) — (£(Vfian) — yir) + 230 1van) |1
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Automatic Bias Selection

Solution

(VE(z) — L3570 yin Vii(k) — yik)

0=n
IV fi2x) — yill?

Total innovation
VF(z) — 230 yir = E[Vfi(mr) — yik)

Estimate with exponential moving average of Vf;(zx) — yi -

]
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Adaptive SVAG

Sample ¢ uniformly from {1, ..., n}

Ty = Bl + (1 = B)(Vfilar) — vir)

_ 5 n e, Vi) —yi )
Ok+1 = saturateZ; (1—5k+1 ||Vf@-(xk>—yi,k||2+e)

Tt = 3 — 2 (Orr (Vi) — yir) + Dore 1 Yik)
Yikt1 = Vii(zr)
Yikt1 = Yjks ViF 1

where 3 € [0,1], € >0,5 >0 and Iy = 0.
Default choice: 5 =0.9, e = 1078 and 6 = n.
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Logistic Regression

ming + S log(1 + g viai @)
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Logistic Regression

E||[VE@M|/[VF ()|
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Square Hinge Loss SVM

min, 2 Y7 | (max(0,1 — yaf2)? + 3|2]?)
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Square Hinge Loss SVM

min, 2 Y7 | (max(0,1 — yalz)® + %|2]]?)
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Conclusion?




