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Optimal Stopping

» Stochastic control with two actions: {stop, continue}

* Find stopping policy that minimizes/maximizes cost/reward

* Examples:
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When to stop interviewing and pick a candidate
When to stop experimenting and accept/reject a hypothesis
When to stop gambling and collect your winnings

When to stop observing the market and sell/buy stocks

When to stop open-loop control and apply feedback




The Fiancée Problem

* Looking for a fiancée among /V bachelors

* For each bachelor, decide: eres Eae

- Reject and continue dating

- Stop and accept bachelor

* Maximizing probability of
picking the best bachelor?

[T. P Hill, American Scientist, 2009, 97(2)]



Solution

* Optimal policy:
- Observe and reject the first 7" bachelors

- Pick the first one who i better among the remaining N — r

e E.greject first half, and pick first one who is better among
second half — 25 % probability of picking best one
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At least1/e =~ 37%
prob. of picking the best!
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[T.S Ferguson, Who solved the secretary problem?, 1989, Statistical Science, 4(3)]



Sequential Analysis

* Hypothesis testing with sequential experiments 7} a.gion of accoptance

18~  for hypothesis H,
15~
12

» After each experiment, decide if

- Stop, and conclude to accept or reject hypothesis ;—:
- Continue experiments to get better estimate A mﬁfoﬁﬁiﬂ“ﬁf ’
0
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* Optimal stopping rule is of threshold type
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* Pioneered by A. Wald et.al during 2nd world war

* Useful when experiments are costly, e.g clinical
trials

[A. Wald, Sequential Tests of Statistical Hypotheses, 1945, Ann. Math. Statist., 16(2)]



Option Pricing

* Option = Financial contract

* Allows you to sell an asset.S (e.g a stock)
for a predetermined price K (strike).

* American option:

- At t =0, buy an option that allows you to
sell § atanytime(0 <t < 7T for price K

- If S(t) > K, option is worthless
- 1fS(t) < K, net-profit K — S(t) > 0
- Pay-off function: G(S(t)) = max(K — S(t),0)

« “Fair” option price: maéXTE[G(S(t))]

* Black, Scholes, Merton — Nobel Prize '97



LQG-Optimal Sampled-Data Control

Sampler
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Optimal Controller Structure
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Optimal for all sampling sequences!
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[A. Goldenschluger & L. Mirkin, On Minimum-Variance Event-Triggered Control, 2017, Control System Letters, 1(1)]



Optimal Sampling = Optimal Stopping

d7 = Azdt +dv, @(r;) =0,
E|dvdvT| = Rdt
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A Free Boundary Problem

Value function satisfies Hamilton-Jacobi-Bellman eq:

min{Flow, Jump} = 0

1 -
Flow = §tr(RV2V) + ZTATVV + 27Q% — A T2 Flow >0
Jump = 0
Jump = V(0) — V(%) + p i
o0
Flow=0|
Jump > 0 z1

e Optimal cost: A\
« Optimal policy: Of2

* There exists a unique solution




Numerical Solution

Complementarity form:
Flow - Jump = 0,

s.t Flow > 0, Jump > 0

Quadratic program:

min 07 (Av + b),

st —0>0, Ad+b>0.

Works for low-dim (~3D)




WIP: Monte-Carlo Approach

Motivation:

Targeting higher-order systems

Parametrize policy, not value function

ML/RL methods applicable
Generalize beyond LQG
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dadosearﬂluate Cost and sampllng
period




Stopping Policy Representation

Stopping Problem in Discrete-Time

B[} o T Qmk] + p
E E[7]

Assume threshold policy:

T =min{k : y,(zx) = 1}

T k—1
E[Y_ 2] Q] = ZE (Zﬂ@%)% o) [T(1 = ()
k=0 ]= 1=0



Smoothing
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Smooth approximation = Stochastic stopping policy



Some Initial Testing

[ Cost Estimate from Validation Data

@ True Optimum
@ MC Estimate

Cost
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* Low-order examples with known parametrization

10,000 trajectories => ~1% error in cost
e Currently validating higher-order systems
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Issues

« Slow to compute cost & gradient for large number of trajectories

e |Local minimas due to randomness i MC estimate

- Stochastic Gradient Descent?
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e Variance reduction of MC estimate
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— Control variates method?
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- Requires variable with known
expectation and high correlation.
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Random variable: Control variate: Time step



Conclusion

* Optimal stopping — stochastic control with two actions {stop,continue}
* Applications:

- Sequential analysis

— Fair option pricing

- Event-based control

- Finding your future spouse...
* Event-based Sampling = Optimal Stopping

- PDE Solver methods for low-dimensional problems

— Current work: Monte-Carlo approach for higher dimensions.
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