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Outline

m Motivation: Cavity Field Control for ESS
m Control for Complex-Coefficient Systems

m More recent uses
m Intuitive tuning of disturbance rejecting peak filters
Analyzing an academically interesting optimization problem using 1
Understanding low-latency digital downconversion
Widely linear systems



Neutrons Reveal “Invisible” Features

ESS, Sweden
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Neutrons

m The Europan Spallation Source is being built outside of Lund
m The world's brightest neutron source
m ...driven by the world’s most powerful linear accelerator

m 2B€ European Collaboration



The ESS Accelerator
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The Field Control Loop
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The Field Control Loop
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Objective: keep amplitude and phase of y at set points, otherwise A



Lab Visits
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European XFEL, Hamburg

SNS, Knoxville, TN



Origins 1: Rotational invariance

Differential equations for the Foucault pendulum:
X = —%x + 2wy sin A
= —%y — 2wxsin A

By introducing z = x + iy, we can write:

5= —%z — Diwzsin A



Origins 2: Baseband transformation

Consider passband systems Gpg(s), with narrow support around w,

t
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|Gpg(iw))|
u(t) = A(t) cos (wet + 6(t)) € R
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Origins 2: Baseband transformation

Consider passband systems Gpg(s), with narrow support around w,

|Gpg(iw))|
u(t) = A(t) cos (wet + 6(t)) € R

Y™

Baseband transformation s — s — jwc, gives G(s) = Gpg(s + iwc)

|G(iw)|

u(t) = A(t)e*) € C

Y™




Important Applications

(Sec. 4.6.2)



Other Applications

Contraction factor of operators
for splitting methods

Doyle's spinning satellite
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Bode’s Sensitivity Integral

Bode's sensitivity integral:

Np

/ log|S(iw)|dw =7 Z Re px
0

k=1
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Bode’s Sensitivity Integral

Does not hold!
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Bode’s Sensitivity Integral

Bode's sensitivity integral:

00 Np
/)2( log |S(iw)| dw = 27rZRepk,
e k=1
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Loop Phase Adjustment

Open loop transfer function
L(s) = Pcav(s)e_SLe_ie . Co(s)e’padj = Lo(s)e"‘S

Stability and robustness depends on loop phase adjustment error
0 = 0,45 — 0

AIm L(iw)

Re L(iw)
46 ’ — 5 =0°
1
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Loop Phase Adjustment

Open loop transfer function
L(s) = Pcav(s)e_SLe_ie . Co(s)e"eadj = Lo(s)e"‘S

Stability and robustness depends on loop phase adjustment error
0 = 0,45 — 0

AIm L(iw)

5 =0°
—o- §=7/6 «» 30°
------ 5§ =2m/3 ¢ 120°




Modeling of Parasitic Cavity Modes
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Modeling of Parasitic Cavity Modes
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Parasitic modes

Nominal design, no parasitic modes, Pl + 1st order filter:
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Parasitic modes, control strategies (1/4)

Pl + 1st order filter:
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Parasitic modes, control strategies (2/4)

Pl + 2nd order filter:

Im L(iw)

Re L(iw)
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Parasitic modes, control strategies (4/4)

Pl + 3rd order filter, adjusting phase of resonant "bulge:

Im L(iw)

Re L(iw)
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Problem: Narrowband Disturbances
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PID-controller is too simplistic: “No internal disturbance model”
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How to keep PID structure and reject narrowband disturbances?



Problem: Narrowband Disturbances

Cpip

—1 |~

PID-controller is too simplistic: “No internal disturbance model”
How to keep PID structure and reject narrowband disturbances?

Increase controller gain at disturbance frequency using peak-filter

_ 52 + 2(2(.«}25 + wg
- 52 + 2<0w05 =+ w%’

CF(S) (z >, wz~wo
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Problem: Narrowband Disturbances

Cpip

—1 |~

PID-controller is too simplistic: “No internal disturbance model”
How to keep PID structure and reject narrowband disturbances?

Increase controller gain at disturbance frequency using peak-filter

_ 52 + 2(2(.«}25 + wg
- 52 + 2<0w05 =+ w%’

CF(S) (z >, wz~wo

This talk: Intuitive Method for selecting the filter parameters 18



Proposed Filter Parametrization

2¢owo(s cos av — wp sin «)
s2 + 2(owos + w3

F(s):=K ~ B(s)+B*(s)

where

- Cowo
B S = K Ia—
() ¢ so iwo + Cowo

B(s) is a complex-coefficient filter with circular Nyquist curve

Alm

B(iwp)
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Digital Downconversion

Two-sample reconstruction recovers the complex envelope y|tx] of
a sampled sinusoidal y.[tx] = Re{y[tk]e”"“<*} with low latency.

Traditionally analyzed as:

[yre[k] 1 [ sinkA  sin(k — l)A] [yc[k - 1]]

Yim[k]| ~ sinA |—coskA cos(k —1)A| | yc[k]

Actually, just digital downconversion with H(z) = b(1 + e~ 242z71)

AH(z)

2efiwctk T \
yelk] % Hz) y[k ﬁ 1

—2we 0
Frequency w [rad/s]
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Analyzing Splitting Methods

Composition

« Example with o = L and § = 1

Ry is 1o —0.5-negatively averaged, Ry is 12 —0.5-averaged

T A

o4
ERenE

« Composition RyR. is + =0.67-negatively averaged

Y3 =Tk+1
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Thank you for listening!
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