

Gourmet Dinner of Complex-Coefficient Systems

— The Second Serving

Olof Troeng 2020-10-02

- **Motivation: Cavity Field Control for ESS**
- Control for Complex-Coefficient Systems
- More recent uses $\mathcal{L}_{\mathcal{A}}$
	- Intuitive tuning of disturbance rejecting peak filters
	- Analyzing an academically interesting optimization problem using *µ* П
	- Understanding low-latency digital downconversion
	- **Widely linear systems**

Neutrons Reveal "Invisible" Features

The Europan Spallation Source is being built outside of Lund

- The world's brightest neutron source
- ...driven by the world's most powerful linear accelerator
- $2B \in$ European Collaboration

The ESS Accelerator

The Field Control Loop

The Field Control Loop

Objective: keep amplitude and phase of y at set points, otherwise

Lab Visits

European XFEL, Hamburg

Berkeley Lab, CA

SNS, Knoxville, TN

Origins 1: Rotational invariance

Differential equations for the Foucault pendulum:

$$
\ddot{x} = -\frac{g}{l}x + 2\omega \dot{y} \sin \lambda
$$

$$
\ddot{y} = -\frac{g}{l}y - 2\omega \dot{x} \sin \lambda
$$

By introducing $z = x + iy$, we can write:

$$
\ddot{z} = -\frac{g}{l}z - 2i\omega \dot{z} \sin \lambda
$$

Origins 2: Baseband transformation

Consider passband systems $G_{PB}(s)$, with narrow support around ω_c

$$
u(t) = A(t) \cos \left(\omega_c t + \phi(t)\right) \in \mathbb{R}
$$

Origins 2: Baseband transformation

Consider passband systems $G_{PB}(s)$, with narrow support around ω_c

Baseband transformation $s \mapsto s - i\omega_c$, gives $G(s) = G_{PB}(s + i\omega_c)$

$$
u(t)=A(t)e^{i\phi(t)}\in\mathbb{C}
$$

Important Applications

Magnetic bearings Power electronics

RF amplifier feedback linearization (Sec. 4.6.2)

MEMS Gyroscopes

Other Applications

Contraction factor of operators for splitting methods

Ball-on-plate (trivial)

Doyle's spinning satellite

Bode's Sensitivity Integral

Bode's sensitivity integral:

$$
\int_0^\infty \log |S(i\omega)| d\omega = \pi \sum_{k=1}^{N_p} \text{Re } p_k
$$

Bode's Sensitivity Integral

Bode's sensitivity integral:

 $\overset{\mathsf{J}}{\smile}$ $\overline{}$ $\overline{}$ $\overline{}$ $\int_0^\infty \log |S(i\omega)| d\omega = \pi \sum_{k=1}^{N_p} \text{Re } p_k$ \int^{∞} 0 log |S(i*ω*)| d*ω* = *π* X $\mathcal{N}_{\bm{\rho}}$ $k=1$ \sum Re p_k

Does not hold!

Bode's Sensitivity Integral

Bode's sensitivity integral:

$$
\int_{\mathfrak{A}-\infty}^{\infty} \log |S(i\omega)| d\omega = 2\pi \sum_{k=1}^{N_p} \text{Re } p_k,
$$

Open loop transfer function

$$
L(s) = P_{\text{cav}}(s) e^{-sL} e^{-i\theta} \cdot C_0(s) e^{i\theta_{\text{adj}}} = L_0(s) e^{i\delta}
$$

Open loop transfer function

$$
L(s) = P_{\text{cav}}(s) e^{-sL} e^{-i\theta} \cdot C_0(s) e^{i\theta_{\text{adj}}} = L_0(s) e^{i\delta}
$$

Open loop transfer function

$$
L(s) = P_{\text{cav}}(s) e^{-sL} e^{-i\theta} \cdot C_0(s) e^{i\theta_{\text{adj}}} = L_0(s) e^{i\delta}
$$

Open loop transfer function

$$
L(s) = P_{\text{cav}}(s) e^{-sL} e^{-i\theta} \cdot C_0(s) e^{i\theta_{\text{adj}}} = L_0(s) e^{i\delta}
$$

Modeling of Parasitic Cavity Modes

$$
P_{\text{cav}}(s) = \frac{\gamma}{s + \gamma - i\Delta\omega}
$$

Modeling of Parasitic Cavity Modes

Parasitic modes

Nominal design, no parasitic modes, $PI + 1st$ order filter:

Parasitic modes, control strategies (1/4)

 $PI + 1st$ order filter:

Parasitic modes, control strategies (2/4)

 $PI + 2nd$ order filter:

Parasitic modes, control strategies (4/4)

 $PI + 3rd$ order filter, adjusting phase of resonant "bulge":

PID-controller is too simplistic: "No internal disturbance model"

PID-controller is too simplistic: "No internal disturbance model" How to keep PID structure and reject narrowband disturbances?

PID-controller is too simplistic: "No internal disturbance model" How to keep PID structure and reject narrowband disturbances? Increase controller gain at disturbance frequency using peak-filter

$$
C_F(s) = \frac{s^2 + 2\zeta_z \omega_z s + \omega_z^2}{s^2 + 2\zeta_0 \omega_0 s + \omega_0^2}, \qquad \zeta_z > \zeta_0, \quad \omega_z \approx \omega_0
$$

PID-controller is too simplistic: "No internal disturbance model" How to keep PID structure and reject narrowband disturbances? Increase controller gain at disturbance frequency using peak-filter

$$
C_F(s) = \frac{s^2 + 2\zeta_z \omega_z s + \omega_z^2}{s^2 + 2\zeta_0 \omega_0 s + \omega_0^2}, \qquad \zeta_z > \zeta_0, \quad \omega_z \approx \omega_0
$$

This talk: Intuitive Method for selecting the filter parameters

Proposed Filter Parametrization

$$
F(s) := K \frac{2\zeta_0 \omega_0 (s \cos \alpha - \omega_0 \sin \alpha)}{s^2 + 2\zeta_0 \omega_0 s + \omega_0^2} \approx B(s) + B^*(s)
$$

where

$$
B(s) = Ke^{i\alpha} \frac{\zeta_0 \omega_0}{s - i\omega_0 + \zeta_0 \omega_0}
$$

 $B(s)$ is a complex-coefficient filter with circular Nyquist curve

Digital Downconversion

Two-sample reconstruction recovers the complex envelope $y[t_k]$ of a sampled sinusoidal $y_c[t_k] = \text{Re}\{\bm{y}[t_k]e^{-i\omega_c t_k}\}\}$ with low latency.

Traditionally analyzed as:

$$
\begin{bmatrix} \mathbf{y}_{\text{re}}[k] \\ \mathbf{y}_{\text{im}}[k] \end{bmatrix} = \frac{1}{\sin \Delta} \begin{bmatrix} \sin k\Delta & \sin(k-1)\Delta \\ -\cos k\Delta & \cos(k-1)\Delta \end{bmatrix} \begin{bmatrix} y_c[k-1] \\ y_c[k] \end{bmatrix}
$$

Actually, just digital downconversion with $H(z) = b(1 + \mathrm{e}^{-2i\Delta}z^{-1})$

Composition

- Example with $\sigma = 1$ and $\beta = 1$
- R_A is $\frac{1}{1+\sigma}$ =0.5-negatively averaged, R_B is $\frac{\beta}{1+\beta}$ =0.5-averaged
- Composition $R_B R_A$ is $\frac{\sigma^{-1} + \beta}{\sigma^{-1} + \beta + 1} = 0.67$ -negatively averaged

Thank you for listening!