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Outline

Motivation: Cavity Field Control for ESS
Control for Complex-Coefficient Systems
More recent uses

Intuitive tuning of disturbance rejecting peak filters
Analyzing an academically interesting optimization problem using µ
Understanding low-latency digital downconversion
Widely linear systems
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Neutrons Reveal “Invisible” Features

X-Rays

Neutrons

ISIS, UK

ESS, Sweden

SNS, US JPARC, Japan

The Europan Spallation Source is being built outside of Lund
The world’s brightest neutron source
...driven by the world’s most powerful linear accelerator
2Be European Collaboration
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The ESS Accelerator

proton
source 1 RFQ 3 bunchers 5 DTLs 26 spoke

cavities
36 medium-β
cavities

84 high-β
cavities

target
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The Field Control Loop

Objective: keep amplitude and phase of y at set points, otherwise
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The Field Control Loop

Objective: keep amplitude and phase of y at set points, otherwise
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Lab Visits

European XFEL, Hamburg

Berkeley Lab, CA

SNS, Knoxville, TN
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Origins 1: Rotational invariance

Differential equations for the Foucault pendulum:

ẍ = −g
l x + 2ωẏ sinλ

ÿ = −g
l y − 2ωẋ sinλ

By introducing z = x + iy , we can write:

z̈ = −g
l z − 2iωż sinλ
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Origins 2: Baseband transformation

Consider passband systems GPB(s), with narrow support around ωc

−ωc 0 ωc

f

|GPB(iω)|
u(t) = A(t) cos

(
ωct + φ(t)

)
∈ R

Baseband transformation s 7→ s − iωc , gives G(s) = GPB(s + iωc)

−2ωc 0
f

|G(iω)|
u(t) = A(t)eiφ(t) ∈ C
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Important Applications

Magnetic bearings Power electronics

RF amplifier feedback linearization
(Sec. 4.6.2)

MEMS Gyroscopes
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Other Applications

Contraction factor of operators
for splitting methods

Ball-on-plate (trivial)

Doyle’s spinning satellite
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Bode’s Sensitivity Integral

Bode’s sensitivity integral:

∫ ∞
0

log |S(iω)| dω = π

Np∑
k=1

Re pk

Does not hold!
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Bode’s Sensitivity Integral

Bode’s sensitivity integral:

Does not hold!

∫ ∞
�A0−∞

log |S(iω)| dω = 2π
Np∑

k=1
Re pk ,
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Loop Phase Adjustment

Open loop transfer function

L(s) = Pcav(s)e−sLe−iθ · C0(s)eiθadj = L0(s)eiδ

Stability and robustness depends on loop phase adjustment error
δ = θadj − θ

-1
.Re L(iω)

Im L(iω)

δ = 0°
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Loop Phase Adjustment

Open loop transfer function

L(s) = Pcav(s)e−sLe−iθ · C0(s)eiθadj = L0(s)eiδ

Stability and robustness depends on loop phase adjustment error
δ = θadj − θ

-1
.Re L(iω)

Im L(iω)

δ = 0°
δ = π/6↔ 30°
δ = 2π/3↔ 120°
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Modeling of Parasitic Cavity Modes

Pcav(s) = γ

s + γ − i∆ω

+ γπ

N∑
n=2

(−1)N−n R2
n

s + γn − i∆ωn
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Modeling of Parasitic Cavity Modes

Pcav(s) = γπ
s + γπ − i∆ωπ

+ γπ

N∑
n=2

(−1)N−n R2
n

s + γn − i∆ωn
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Parasitic modes

Nominal design, no parasitic modes, PI + 1st order filter:
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Parasitic modes, control strategies (1/4)

PI + 1st order filter:
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Parasitic modes, control strategies (2/4)

PI + 2nd order filter:
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Parasitic modes, control strategies (4/4)

PI + 3rd order filter, adjusting phase of resonant ”bulge”:
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Problem: Narrowband Disturbances

CPID
u P

−1

y

d

y

PID-controller is too simplistic: “No internal disturbance model”
How to keep PID structure and reject narrowband disturbances?
Increase controller gain at disturbance frequency using peak-filter

CF (s) = s2 + 2ζzωzs + ω2
z

s2 + 2ζ0ω0s + ω2
0
, ζz > ζ0, ωz ≈ ω0

This talk: Intuitive Method for selecting the filter parameters
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Proposed Filter Parametrization

F (s) := K 2ζ0ω0(s cosα− ω0 sinα)
s2 + 2ζ0ω0s + ω2

0
≈ B(s)+B∗(s)

where
B(s) = Keiα ζ0ω0

s − iω0 + ζ0ω0

B(s) is a complex-coefficient filter with circular Nyquist curve

B(iω0)
K
α

ω → −∞

ω →∞

Re

Im
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Digital Downconversion
Two-sample reconstruction recovers the complex envelope y [tk ] of
a sampled sinusoidal yc [tk ] = Re{y [tk ]e−iωc tk} with low latency.

Traditionally analyzed as:[
yre[k]
yim[k]

]
= 1

sin ∆

[
sin k∆ sin(k − 1)∆
− cos k∆ cos(k − 1)∆

] [
yc [k − 1]

yc [k]

]

Actually, just digital downconversion with H(z) = b(1 + e−2i∆z−1)

2e−iωc tk

H(z)
yc [k] y [k]

0−2ωc

Frequency ω [rad/s]

H(z)
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Analyzing Splitting Methods
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Thank you for listening!


