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Introduction

Difficulties
@ Nonlinear
@ Nonautonomous
@ Configuration manifolds

Main idea

@ Example 1 - Peaking .
@ Example 2 - Uniform stability
@ Example 3 - Case study [1]

Figure 1: The small Crazyflie quadrotor

Pontus: Good idea to talk about Lyapunov functions!

[1] E. Lefeber, M. Greiff, and A. Robertsson, “Filtered output feedback tracking

control of a quadrotor UAV,”
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Overview and main thread of presentation

Introduction
o Pitfalls in NLTV analysis
o Introducing the case study
@ Lyapunov’s Second Method
e The main idea
Barbalat's Lemma
e The main idea
o Useful variations
o Application
@ Matrosov’s Theorems

e The main idea
o Application

()

()

Simulation example
Figure 2: Example simulation (to be explained)
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Introduction - A note of caution

Some warnings

o

o

(*]

=

Quite dense
Lots of signals...!
Some omitted details

A system (with memory)

Time [s]

A rotation (always € R3*3)

A reference

A tracking error

Global, as in globally stable (GS)
Asymptotic, as in asymptotically stable (AS)
Exponential, as in exponentially stable (ES)
Uniform, as in uniformly stable (US)
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Introduction - Curious Example 1

Consider two linear systems

2/1 i @ = Az, wl(to) = T1o (1a)

Yo: @y = Asxo, 5172(to) = T20. (1b)
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Consider two linear systems

2/1 i @ = Az, wl(to) = T1o (1a)

Yo: @y = Asxo, 1132(to) = T20- (1b)
Consider the cascade
21 \ Cj’:l £ A1i131 = BiL‘Q. (2)
If {3, 32} are asymptotically stable (AS), then {1, X5} is AS, as
A1 B 1
0 AQ] [$2‘| (3)

d I
P ON s =
{ 1, 2} dt [$2]

What if the systems are nonlinear and non-autonomous?
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Introduction - Curious Example 1

Consider two nonlinear systems

2’1 of @z = fl(t,zcl), wl(to) = T1o (4a)
Yo Xo = fg(t7x2), IBQ(to) = T20- (4b)
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Introduction - Curious Example 1

Consider two nonlinear systems

2’1 of @z = fl(t,zcl), wl(to) = T1o (4a)
Yo Xo = fg(t7x2), IBQ(to) = T20- (4b)

Consider the cascade
Y1 &1 = filt,x1) + g(t, T1, T2) s (5)

If {3, 32} are asymptotically stable (AS), then {X1, X5} is...

...it depends!
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Introduction - Curious Example 1

Example (Peaking)
Lett, = 0, and consider a nonlinear system

2/1 1T = —.T?, JUl(to) = Tlo,

22 . :iIQ = —X9, xg(to) = T2o.
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Introduction - Curious Example 1

Example (Peaking)
Lett, = 0, and consider a nonlinear system

2/1 1T = —.T?, JUl(to) = Tlo,

22 . iIQ = —X9, xg(to) = T2o.
When connecting the systems through g(z1, x2) = 3, we get

21 : l"l = *(1 — .Tg)l‘?l)

7/27



Introduction - Curious Example 1

Example (Peaking)
Lett, = 0, and consider a nonlinear system

¥ idy = —x‘;’, z1(to) = Z10,

Yo ko = —x9, xo(ts) = T2o.
When connecting the systems through g(z1, x2) = 3, we get
Y1 iy = —(1 — x9)zs
The solution for the system {¥1, 32} is

x1(t) = sign(w10) (272 + 2290 (e — 1) + 2t)~1/2

z2(t) = x90e™,
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Introduction - Curious Example 1

Example (Peaking)

Here Y is GAS, and X5 is GAS, but for their cascade through g, the
solution x1 (t) diverges with a finite escape time even for x1, > 0.

—Tlo = 0.7
—_—T1o = 0.8
— 210 =0.9
—_— 21, = 1.0
—T1o = 1.1
— o =12
—_—21, =13
----- tese whenzio = 1.3
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Introduction - Curious Example 1

Example (Peaking)
Here Y is GAS, and X5 is GAS, but for their cascade through g, the
solution x1 (t) diverges with a finite escape time even for x1, > 0.

2 Z1o=13
----- tese when i, = 1.3

If {327, 32} are asymptotically stable (AS), then {2, X5} is...

GAS if a set of sufficient conditions on {X/, X2} and g are met.
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Introduction - Curious Example 1

Example (Peaking)

Here 33| is GAS, and X5 is GAS, but for their cascade through g, the
solution x1 (t) diverges with a finite escape time even for 1, > 0.

— 110 =0.7

a1(t)

2 —_—r =13
----- tesc when o = 1.3

Growth rate: If {3, X2} is AS, and there exists continuous
0i : R>o — R such that [|g(z1, z2)|| < O1([|z2]]) + O2([|2()) |21
then {1, X2} is also AS (see e.g. Panteley '99 [2], or Loria '05 [3]).

E]
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Introduction - Curious Example 1

Takeaway

In the nonlinear setting, the separation principle generally does not
apply. Care must be taken when connecting a found controller with an
observer, as the introduced dynamics may cause the states to diverge,
even if {X}, Xo} has very nice properties. Especially true when
aiming for global or almost global stability properties.
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Introduction - Curious Example 1

Takeaway

In the nonlinear setting, the separation principle generally does not
apply. Care must be taken when connecting a found controller with an
observer, as the introduced dynamics may cause the states to diverge,
even if {X}, Xo} has very nice properties. Especially true when
aiming for global or almost global stability properties.

With a "nice” feedback, a "nice” estimator and "good” connection, are
asymptotic stability properties enough? What about robustness?
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Introduction - Curious Example 2

Consider two non-autonomous systems:

2\l a v {0
Sa: @ = ft,z) + Al z),

where |A(t,z)|| < L forall t > t,. What does 3 say about on X5 ?
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Introduction - Curious Example 2

Consider two non-autonomous systems:

EA: a::f(t,w)—i—A(t,:c),
where |A(t,z)|| < L forall t > t,. What does 3 say about on X5 ?

Example (Loria, Panteley, Teel '99)

Consider a nominal system with defined by a(t) = (t + 1), with

—a(t)sign(z) if |z| > a(t)

t>t, > 0.
—z if |z| <alt)

9

z = f(t,x) :{

When adding a A(t) = L # 0, solutions grow unbounded as t — cc.
In fact, lim;_, . x(t) /t = £ L (depending on the sign of z(t,))
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Introduction - Curious Example 2

Problem: the solution of z(t) for the unperturbed system & = f(¢, x)
depends on (., x(ts)), the convergence to the origin is not uniform.
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depends on (., x(ts)), the convergence to the origin is not uniform.

Solution: Require uniform asymptotic stability (independent of ¢,).
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Introduction - Curious Example 2

Problem: the solution of z(t) for the unperturbed system & = f(¢, x)
depends on (., x(ts)), the convergence to the origin is not uniform.

Solution: Require uniform asymptotic stability (independent of £,).

Takeaway

In general, to say something about the robustness properties of
systems on the form % : & = f(t, x) we require uniform stability
properties. Several local or global boundedness results follow (see
e.g., Khalil '96 [4, Theorem 3.18 combined with Lemma 4.3]).
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Introduction

The attitude dynamics of the UAV

R =RS
P { (@), (Controlled system)  (6a)

Jw =SJw)w+ T,

5 . {Rr =R.S(w,),

N S(Jew)oon + (Reference system)  (6b)
Wy = Wy )Wy T T,

where
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Introduction

The attitude dynamics of the UAV

R =RS
P { (@), (Controlled system)  (6a)

Jw =SJw)w+ T,

Rr ~ RT‘S r)s

PIM ] (wr) (Reference system)  (6b)
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where
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where
J e R st. J=J" >0
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Introduction

The attitude dynamics of the UAV

R =RS
P { (@), (Controlled system)  (6a)

Jw =SJw)w+ T,

5 . {Rr =R.S(w,),

o S(Jew)oon + (Reference system)  (6b)
w, = Wy )wr + T,

where
J e R st. J=J' =0
SR> 5 R¥>3 st. S(a)b=axb
R, R, € SO(3) s.t.  Orthogonal, positive determinant
w,w, € R? s.t. |lw,|| is uniformly bounded in ¢

7,7 €R? s.t. ||7,|| is uniformly bounded in ¢
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Introduction

Objective: Find g(R,w, R,,w,, T,) suchthat R - R,,w — w,

Tr

{R wr} {R,w}
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Introduction

Objective: Find g(R,w, R,,w,, T,) suchthat R - R,,w — w,

Tr

{R wr} {R,w}

@ Many (almost) global solutions exist [5]-[8] , however...
@ Essentially a full-state feedback - requires an estimator

@ Stability should to be uniform, estimator needs to be (almost)
globally stabilizing, interconnection needs to satisfy conditions.

12/27



Introduction

Alternatively, solve a filtered output feedback problem, as in [1].

T
Yy Y ,
X, T = g() Py
Ck
{Ry,w;} > % ok {R,w}
dt {vitl,
¢

13/27



Introduction

Alternatively, solve a filtered output feedback problem, as in [1].

T
Yy Y ,
X, T = g() Py
Ck
{Ry,w;} > % ok {R,w}
dt {vitl,
¢

o Define a filter memory ¢ (here {R, &} € SO(3) x R3).

13/27



Introduction

Alternatively, solve a filtered output feedback problem, as in [1].

T
Yy Y ,
X, T = g() Py
Ck
{Ry,w;} > % ok {R,w}
dt {vitl,
¢

o Define a filter memory ¢ (here {R, &} € SO(3) x R3).
@ Define an update of ¢ in a set of measurements {yi}ﬁil (IMU).

13/27



Introduction

Alternatively, solve a filtered output feedback problem, as in [1].

T

{I{TvuJT} {1{701}

dt {y:} i,

o Define a filter memory ¢ (here {R, &} € SO(3) x R3).
@ Define an update of ¢ in a set of measurements {yi}ﬁil (IMU).

o Define a feedback law ¢(¢, R, w,, T,) such that
R - R,,w — w, and {¢, R, w, T} remain bounded.
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Introduction

Case: filtered output feedback in [1].

IFAC

lllustrate the ideas

©

Less focus on precision
Defining the errors

A curious Lyapunov function
Applying Barbalat

Applying Matrosov

®© 6 6 66 ¢ o

Simulation example

[1] E. Lefeber, M. Greiff, and A. Robertsson, “Filtered output feedback tracking

control of a quadrotor UAV,”
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Case study - Errors

Consider the errors,

R.=R,R' € S0O(3), (7a)
R=RR' e SO(3), (7b)
We =W, — W e R3, (7c)
D=0 -—w e R3, (7d)
De = Wy — W e R3. (7e)
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We = Wp — W e R3, (7c)
D=0 -w € R3, (7d)
De = Wy — W e R3. (7e)
With the controller and observer in [1] (here omitted for brevity),
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Case Study - Lyapunov

Consider an AS linear system,
x=Ax, z(t,) € R".
Then, there exists a solution
ATP+PA+Q=0, P=P' >0, Q=Q" -0,

using 1yap(A,Q) and a quadratic Lyapunov function V = 2" Pzx.

— (21,2,V) ' — Bllle(ta)] ¢~ to)
: — ()]

V(t, z) = 2% + 172 + T3
@)l
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Case study - Lyapunov

Consider a PD function in the errors (where k; > 0, v; }f v; € R3),
N N

_ ki =gl 2, LT ki = 2 1 T
V1 _ZEHRER v; — v + 5we Jwe+Z§HRvi—viH +5@ Jo.

=1 =1
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Case study - Lyapunov

Consider a PD function in the errors (where k; > 0, v; }f v; € R3),

N N
i ~ 1 i) 1. ~
V=Y %HReRTm — il + Jwd Jwe + > %HRvi —vil* + 5o Je.

=1 =1

The function is NSD along the solutions of the error dynamics, with

. N T 2
Vl = —cCr ‘ZkZS(E vi)(RrT’Ui-l—RT'Ui) —weTwae —G)Tcw@.

=1

where cp > 0, K, >~ 0,C,, > 0.
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Case study - Lyapunov

Consider a PD function in the errors (where k; > 0, v; }f v; € R3),

N N
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The function is NSD along the solutions of the error dynamics, with

N
. ~ 2
Vi =—cn ‘ Y kSR vi) (R, Tvi + R v0)|| — w0l Kuwe — &7 Cut.

=1

where cp > 0, K, >~ 0,C,, > 0.

(i) Standard Lyapunov theory is difficult to apply

17/27



Case study - Lyapunov

Consider a PD function in the errors (where k; > 0, v; }f v; € R3),

N N
i ~ 1 i) 1. ~
V=Y %HReRTm — il + Jwd Jwe + > %HRvi —vil* + 5o Je.

=1 =1

The function is NSD along the solutions of the error dynamics, with

N
R 2
‘ S kSR v (R, vi + R v)|| - w] Kowe -6 Cutd.

=1

V1:—CR
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Case study - Lyapunov

Consider a PD function in the errors (where k; > 0, v; }f v; € R3),

N N
_ ki 1 2 T S ki = 2 1 T+
V) = E EHRCR v; — v + gwe Jwe + g §\|Rvi—vz|\ +5@ Jo.

=1 =1

The function is NSD along the solutions of the error dynamics, with

N
R 2
‘ S kSR v (R, vi + R v)|| - w] Kowe -6 Cutd.

=1

V1:—CR

where cp > 0, K, >~ 0,C,, > 0.

(i
(i
(il

(iv) Due to (iii), V1 is uniformly continuous in time

Standard Lyapunov theory is difficult to apply
As V; is negative semi-definite, V; is upper bounded,
Due to (ii), errors are bounded, and therefore V1 is bounded

)
)
)
)
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Case study - Barbalat

Lemma (Barbalat ’59 [9])

Let ¢ : R>9 — R be a uniformly continuous function on its domain. If
O(t) = limy 00 fg o(T)dT exists and is finite, p(t) — 0 ast — oc.
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lim w.=0
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. 4 3y T T
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O(t) = limy 00 fg o(T)dT exists and is finite, p(t) — 0 ast — oc.

® ¢ £ V), is uniformly continuous.
e ® £V, > 0 and decreasing (171 < 0), V1 converges to a limit.

Application of the Lemma yields asymptotic convergence to

lim w.=0
(t—to)—o0
lim @w=0
(t—to)—o0
. 4 "y T T
lim Y ]{JZS(R ’Ui)(RT v, + R ’Ui) =0

(t—to)—0c0 =1

lim Vy=0=
(t—to)—ro0
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Case study - Barbalat

Lemma (Variant of Barbalat’s Lemma [10, Lemma 2.2.12])

Let f : R>o — R be any differentiable function. If f(t) converges to
zero ast — oo and its derivative satisfies

f@) = fo(t) +n(t) >0, (9)

where fo : R>9 — R is uniformly continuous andn : R>o — R. If
n(t) tends to zero ast — oo, f(t) and fy(t) tend to zero ast — oc.
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zero ast — oo and its derivative satisfies

f(@) = fot) +n(t) =0, (9)

where fo : R>9 — R is uniformly continuous and n : R>g — R. If
n(t) tends to zero ast — oo, f(t) and fy(t) tend to zero ast — oc.

Consider

N
J@s, = S(Jw)w, +S(J@)w,— Ko(we—)— > kSR vi)R v, .

=1

e
2f(t) 2(t) 2—fo(t)

As f(t) — 0 and fo(t) is uniformly continuous, fo(t) — 0 as t — oco.
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Case study - Barbalat

Summary from Barbalat
@ First application,
N LT
Y kSR vi) (R v+ Rv;) £ folt) + go(t) — 0.
i=1

@ Signal chasing, fo(t) — 0 = go(t) = 0as (t — t,) — oo
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Case study - Barbalat

Summary from Barbalat
@ First application,
N LT
> kiS(R vi)(R]vi + RTv;) £ fo(t) + go(t) — 0.
i=1
@ Signal chasing, fo(t) — 0 = go(t) = 0as (t — t,) — oo

All solutions converge to an invariant set

However, convergence to S is asymptotic, but not necessarily uniform.
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Case study - Matrosov

The main idea of Matrosov

@ NSD V; and non-autonomous error dynamics

@ Find uniformly bounded function ); which upper bounds Vi
@ Satisfy nested properties on );

@ Exact details in [3, Thm. 1 and Thm. 2].

2 —
— V(=)
— Vl(t.w)
“e D)
""" Va(t, x)
5} 'Cf}@::#mwwm*“"' ———————
1§
_9 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time ¢
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AT
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@ Then, plugging in the error dynamics,

Wy o

2
M.
@ = + M3

\ T

1=1

g

A
= s,
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Case study - Summary

Barbalat + Signal chasing + Matrosov

@ Uniform asymptotic convergence of (R., R, w.,®) — S

It is also possible to show

@ By conditions on {(k;,v;)}.;: S contains 13 isolated equilibrium points
@ By local linearization :(I1,1,0,0) € Sis UAGAS
@ By local linearization :(I,1,0,0) € Sis ULES

]
(R.w) (R.w)

{yi}Yo
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Case study - Simulation

Recall, the proposed Lyapunov function

N N
k; =T 2, 1 ¢ ki z 2 174
V) = E —||ReR vi —vi|” + sw, Jwe + E = Bv; —vi||* + =& J&.
2 2 2 2
i=1 i=1
2
m—log10(V1) ——— (d/dt)V; (ana.)
g, = = =(d/dt)V; (num.)
P
=R
s 2
S @
32
=]
g 4
[
6
0 5 5 10
Time s Time [s]
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Case study - Simulation

@ The Lyapunov function time derivative in the errors (black)

N
p 2
‘ Z kiS(RT’Ui)(RTT’Ui + RT’Ui) ‘ e wZwae —&'CLe.

i=1

VIZ_CR

@ And evaluated from V; by numerical differentiation (blue)

2 0
—log1o(V1) ———(d/dt)V; (ana.)

g = = = (d/dt)V; (num.)
.2 0
£
> S -2
S %
£ 4
3

-6

0 5 10 5 10
Time 3] Time 3]
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Conclusions

Summary

Separation principle and peaking
Uniform stability and robustness

Making sense of 27 error signals
Code: AerialVehicleControl.jl [11]

(*)

(*)

@ Tools from Lyapunov, Barbalat, and Matrosov
o

o

@ More: ACC Wed, 10.15 and 11.00 (UTC -5)

Thank you for listening!

[11] M. Greiff, AerialVehicleControl.jl, nonlinear and robust UAV control system

synthesis,
24/27


https://control.lth.se/fileadmin/control/staff/greiff/html_avc/
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