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Graph distance
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Graph distance
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Why Is Laplacian Laplacian?

P-S. Laplace 1749 — 1827



Laplacian and Laplacian
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Bunny in Heat
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Discrete  »% Continuous
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Discretize-then-Optimize
or
Optimize-then-Discretize




Geometry on graph

Difficulty: graph distance is not geodesic ...

d(x(t),xz(s)) < c|t — s|

No smooth structure @

Analogies, embeddings ... can be made




Optimal Transport
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Define distance between prob. dist. <

c(x,y) = |z —yl|” = Wy(po, p1) c(x,y) is the unit cost from x to y

p1(y)



OT as Optimal Control

= [z —yl”

mm/ |z — T(x)||*dpo ()

S.1.

Typo = p1

1
min/ /p(t,x)\u\Qdazdt
v Jo JX

st. Op+V-pu=0, p(0,-)=po, p(1,-) = p1

Benamou and Brenier 2000




OT as Stochastic Control
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A digression about my work ...
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Input and density constraints
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A digression about my work ...
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Curvature, input & density constraints
State space: mesh space

Lavenant et. al. 2018



A digression about my work ...

OT on Lie group

dR = R(Q + Qo)dt + udt + »  RQ;dB,

dX = (AX + Bu)dt+ Y D;XdBj, Xg~ po, X1 ~ p1

Controlling covariance



Back to geometry on graph

No Riemannian geometry exists on graph

But certain curvature can still be defined

Ricci curvature of metric spaces

Yann Ollivier
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Received 21 September 2007; accepted after revision 6 October 2007

Presented by Etienne Ghys

Abstract

We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local
contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance.
This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound
(Lichnerowicz theorem), Gaussian concentration of measure (Lévy—Gromov theorem), logarithmic Sobolev inequalities (a result
of Bakry—Emery theory) or the Bonnet—Myers theorem. The definition is compatible with Bakry—Emery theory, and is robust and
very easy to implement in concrete examples such as graphs. To cite this article: Y. Ollivier, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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curvatures

Gregorio Ricci-Curbastro 1853-1925

(discoverer of Tensor Calculus)



Ricci curvature on graph
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(a) Surface of Negative Curvature

(d) Negative Curvature (e) Zero Curvature (f) Positive Curvature

Ni et. al. 2019 Scientific reports



Riccl flow

% = —2RicY

OC
Richard S. Hamilton . . Grigori S. Perelman



Surgery

Ricci Curvature

Ricel flow with surgery on three-manifolds

(Grisha Perelman®

(a) initial manifold (a') initial network

February 1, 2008

This is a technical paper, which is a continuation of [I|. Here we verify most
of the assertions, made in [I, §13]; the exceptions are (1) the statement that a
3-manifold which collapses with local lower bound for sectional curvature is a
graph manifold - this is deferred to a separate paper, as the proof has nothing to
do with the Ricei flow, and (2) the claim about the lower bound for the volumes
of the maximal horns and the smoothness of the solution from some time on,
which turned out to be unjustified, and, on the other hand, irrelevant for the
other conclusions.

(b) manifold after Ricci flow (b') network after Ricci flow

(c) manifold after surgery (c') network after surgery

Ni et. al. 2019 Scientific reports



One more word on Geometry & Control

/ sub-Riemannian geometry e OC of non-holonomic sys.
i = u i = u, fi()
Y = U

Z=U1Y — UX

u

min/ u?g + uidt,

(20, y0) fixed

Roger W. Brockett 1938 - 2023 * Dido’s problem
* Isoperimetric problem
* Heisenberg geometry



An OT solver to Dido
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Conclusion

* Various connections between graph, geometry, OT, OC

* Try dynamics even if the problem is static, e.g., heat flow,
dynamic OT, Ricci flow

e Continuous model sometimes provides more insight

* Discretization may lead to unpredictable behaviors

* A lot to explore regarding graph geometry!

LUND
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“The aim of science is to make difficult things understandable
in a simpler way; the aim of poetry is to state simple things in
an incomprehensible way. The two are incompatible.”

— Paul A.M. Dirac
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