On H-infinity Structured Static State Feedback

Carolina Lidström

H-infinity Static State Feedback

Let a LTI plant *G* be given in state-space by

$$
\dot{x} = Ax + Eu + Bv
$$

with state $x \in \mathbb{R}^n$, control input $u \in \mathbb{R}^m$ and disturbance $v \in \mathbb{R}^q$.

H-infinity Static State Feedback

Find a static state feedback controller *L* such that the closed-loop system with state-space realization

$$
\dot{x} = (A + EL)x + Bv
$$

- i is stable
- ii and $||G_{cl,v\rightarrow z}(L)||_{\infty} < \gamma$

where *z* is performance output with cost matrix Q_1 on states x and Q_2 on input u , i.e., $x^TQ_1x + u^TQ_2u$.

 \rightarrow Bounded real lemma

Bounded real lemma

The closed-loop system

i is stable

ii and $||G_{cl,v\rightarrow z}(L)||_{\infty} < \gamma$

if and only if there exist a matrix *L* and a symmetric matrix *P >* 0 such that

$$
\begin{bmatrix} (A + EL)^T P + P(A + EL) & PB & I & L^T \\ B^T P & -\gamma^2 I & 0 & 0 \\ I & 0 & -Q_1^{-1} & 0 \\ L & 0 & 0 & -Q_2^{-1} \end{bmatrix} < 0
$$

Bounded real lemma

Trick: Right- and left-multiply by $\text{diag}(P^{-1}, I, I)$.

$$
\begin{bmatrix} WA^T + AW + EZ + Z^TE & B & W & Z^T \\ B^T & -\gamma^2 I & \geq 0 & 0 \\ W & 0 & -Q_1^{-1} & 0 \\ Z & 0 & 0 & -Q_2^{-1} \end{bmatrix} < 0
$$

where $W = P^{-1}$ is symmetric positive definite and $Z = LP^{-1}$. L is given by $L = ZW^{-1}$.

H-infinity Structured Static State Feedback

[Tanaka, Langbort 2011].

Given plant G and assume that B is entry-wise non-negative. Then there exists a static state feedback controller

$$
L \in \mathcal{L} = \{L \in \mathbb{R}^{m \times n} : L^j \in \mathcal{E}_j \text{ for all } j = 1, ..., n\}
$$

such that the closed-loop system

- i *is stable*
- ii *internally positive*
- $\lim_{\delta \to 0}$ and $||G_{cl,v\to z}(L)||_{\infty} < \gamma$

if and only if there exists a diagonal matrix $W > 0$ *and a matrix* $Z \in \mathscr{L}$ such *that the LMI is feasible and AW* + *EZ is Metzler.*

Specific type of systems

Consider a LTI system with states $x \in \mathbb{R}^n$, control inputs $u \in \mathbb{R}^m$, disturbance signals $v\in\mathbb{R}^n$ and state-space realization

 $\dot{x} = -\text{diag}(a)x + Eu + Bv$

where $a \in \mathbb{R}_{>0}^n$, $E \in \mathbb{Z}^{n \times m}$ and $B \in \mathbb{R}_{\geq 0}^{n \times n}$.

Moreover, each column of *E* has one entry equal to 1 and one entry equal to -1 , while the remaining ones are zero.

Problem formulation

Compare non-structured static state feedback with structured.

Network description

$$
\dot{x} = -\frac{\text{diag}(a_1, a_2, a_3)x + \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} u + Bv
$$

where $a_i > 0$ and with associated graph

$$
\begin{pmatrix} 1 & u_1 \\ \hline & 2 & u_2 \\ \hline & & 3 \end{pmatrix}
$$

The arrow-head on the link depicts the positive direction of *uⁱ* . However, the quantity goes in both direction, just with opposite sign.

Structured Static State Feedback

$$
L = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \end{pmatrix}
$$

Decentralized: $l_{13} = 0$ and $l_{21} = 0$.

 $A + EL$ Metzler: $l_{11} > 0$, $l_{12} < 0$, $l_{22} > 0$ and $l_{23} < 0$.

Because $W > 0$ diagonal and $L = ZW^{-1}$, the constraints on L become linear constraints on *Z*.

Comparison of non-structured and structured

- **•** Same bound γ
- \bullet In some cases, dependent on A and B , the structured static state feedback can be made even more sparse

Proposition

The two convex problems,

variables *W* symmetric, *Z* minimize γ^2 $\text{subject to } W > 0, LMI(\gamma^2, W, Z) < 0$

and

variables *W* diagonal, *Z* minimize γ^2 subject to $W > 0$, $LMI(\gamma^2, W, Z) < 0, Z \in \mathcal{L}_{DF}$

give the same optimal value for this type of systems.

Conclusion

- • Proposition: same bound on norm, proof?
- Performance needs to be compared more carefully
- Other types of systems where this still holds
- Searching for suitable "real" systems