On H-infinity Structured Static State Feedback

Carolina Lidström

H-infinity Static State Feedback

Let a LTI plant G be given in state-space by

 $\dot{x} = Ax + Eu + Bv$

with state $x \in \mathbb{R}^n$, control input $u \in \mathbb{R}^m$ and disturbance $v \in \mathbb{R}^q$.

H-infinity Static State Feedback

Find a static state feedback controller L such that the closed-loop system with state-space realization

$$\dot{x} = (A + EL)x + Bv$$

i is stable

ii and
$$||G_{cl,v \rightarrow z}(L)||_{\infty} < \gamma$$

where z is performance output with cost matrix Q_1 on states x and Q_2 on input u, i.e., $x^TQ_1x + u^TQ_2u$.

 \rightarrow Bounded real lemma

Bounded real lemma

The closed-loop system

i is stable

ii and $||G_{cl,v \rightarrow z}(L)||_{\infty} < \gamma$

if and only if there exist a matrix L and a symmetric matrix $P>0\ {\rm such}$ that

$$\begin{bmatrix} (A+EL)^TP + P(A+EL) & PB & I & L^T \\ B^TP & -\gamma^2 I & 0 & 0 \\ I & 0 & -Q_1^{-1} & 0 \\ L & 0 & 0 & -Q_2^{-1} \end{bmatrix} < 0$$

Bounded real lemma

Trick: Right- and left-multiply by $diag(P^{-1}, I, I)$.

$$\begin{bmatrix} WA^T + AW + EZ + Z^TE & B & W & Z^T \\ B^T & -\gamma^2 I & 0 & 0 \\ W & 0 & -Q_1^{-1} & 0 \\ Z & 0 & 0 & -Q_2^{-1} \end{bmatrix} < 0$$

where $W = P^{-1}$ is symmetric positive definite and $Z = LP^{-1}$. L is given by $L = ZW^{-1}$.

H-infinity Structured Static State Feedback

[Tanaka, Langbort 2011].

Given plant G and assume that B is entry-wise non-negative. Then there exists a static state feedback controller

$$L \in \mathscr{L} = \{ L \in \mathbb{R}^{m \times n} : L^j \in \mathcal{E}_j \text{ for all } j = 1, \dots, n \}$$

such that the closed-loop system

- i is stable
- ii internally positive
- iii and $||G_{cl,v \to z}(L)||_{\infty} < \gamma$

if and only if there exists a diagonal matrix W > 0 and a matrix $Z \in \mathscr{L}$ such that the LMI is feasible and AW + EZ is Metzler.

Specific type of systems

Consider a LTI system with states $x \in \mathbb{R}^n$, control inputs $u \in \mathbb{R}^m$, disturbance signals $v \in \mathbb{R}^n$ and state-space realization

 $\dot{x} = -\text{diag}(a)x + Eu + Bv$

where $a \in \mathbb{R}^n_{>0}$, $E \in \mathbb{Z}^{n \times m}$ and $B \in \mathbb{R}^{n \times n}_{>0}$.

Moreover, each column of E has one entry equal to 1 and one entry equal to -1, while the remaining ones are zero.

Problem formulation

Compare non-structured static state feedback with structured.

Network description

$$\dot{x} = -\operatorname{diag}(a_1, a_2, a_3)x + \begin{pmatrix} -1 & 0\\ 1 & -1\\ 0 & 1 \end{pmatrix}u + Bv$$

where $a_i > 0$ and with associated graph

$$(1) \xrightarrow{u_1} (2) \xrightarrow{u_2} (3)$$

The arrow-head on the link depicts the positive direction of u_i . However, the quantity goes in both direction, just with opposite sign.

Structured Static State Feedback

$$L = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ l_{21} & l_{22} & l_{23} \end{pmatrix}$$

Decentralized: $l_{13} = 0$ and $l_{21} = 0$.

A + EL Metzler: $l_{11} \ge 0$, $l_{12} \le 0$, $l_{22} \ge 0$ and $l_{23} \le 0$.

Because W > 0 diagonal and $L = ZW^{-1}$, the constraints on L become linear constraints on Z.

Comparison of non-structured and structured

- Same bound γ
- In some cases, dependent on *A* and *B*, the structured static state feedback can be made even more sparse

Proposition

The two convex problems,

variables W symmetric, Z minimize γ^2 subject to $W>0, \, LMI(\gamma^2,W,Z)<0$

and

variables W diagonal, Z minimize γ^2 subject to W > 0, $LMI(\gamma^2, W, Z) < 0, Z \in \mathcal{L}_{DP}$

give the same optimal value for this type of systems.

Conclusion

- Proposition: same bound on norm, proof?
- Performance needs to be compared more carefully
- Other types of systems where this still holds
- Searching for suitable "real" systems