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About me - Education

e BSc in mathematics (2015)

e Study abroad at University of California, Berkeley (2016-2017)

e MSc in engineering physics, specialization in financial modelling (2020)
e MSc in finance (2020)
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About me - Before joining the department
Summer 2017
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o Worked on vision and tactile sensing for robotic manipulation using deep neural network
predictive models

o @ Sergey Levine's research group at UC Berkeley
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About me - Before joining the department
Summer 2018
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e Looked at stability issues of stochastic biochemical reaction networks (populations of a finite
number of species that evolve through predefined interactions)

e Automated construction of Foster-Lyapunov functions to prove ergodicity of continuous-time
Markov processes via convex optimization

e © Mustafa Khammash's research group at ETH Ziirich, D-BSSE
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About me - Before joining the department
Master thesis
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e Data-driven and non-parametric methods for covariance matrix regularization for portfolio
selection

e @ Lynx Asset Management in Stockholm

e Supervisors: Tobias Rydén, Magnus Wiktorsson, Pontus Giselsson, Frederik Lundtofte
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Performance estimation problems - The work this presentation is
based on

Performance of first-order methods for smooth convex minimization
(Drori and Teboulle, 2014)
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Performance estimation problems - Motivation

e Class of functions F:

e Collection of functions f : R? — R with some properties
e Assume Jz, € X, (f), where X, (f) is the set of minimizers of f

e Want to minimize functions in F via some algorithm

First-order black-box optimization method on F is an algorithm A:

e 1o € R initial point

o f & F fixed

o v = A ({oi Yo A @)Yisg AV (@)}i_y) foreach i =0,...,N =1
o Worst-case analysis: Given A, what is

max (f(zn) = f(z+))?

fer

Worst-case design: Given some class of algorithms A, what is

A" = argmin <rfn§; (flzn) — f(fv*))> ?

A€A

(We will not cover worst-case design today)
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Performance estimation problems - Assumptions

Manu Up:

Let L>0. f€ Fz’l(Rd) if and only if f : RY — R is continuously differentiable, convex
and the gradient V f is L-Lipschitz continuous

Let A be a first-order black-box optimization method on Fi’l(Rd)
Consider only f € fl’l(Rd) such that X, (f) := argmin,pa f(x) is non-empty

Let R > 0. For each f € ]:1 1(Rd) consider only initial points 29 € R% such that there
exists an xx € X« (f) such that |z« —zoll, < R

A generates a finite sequence of length N + 1 (including the initial point)
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Performance estimation problems - The problem

maximize f(zn) — f(z«)
subject to  f € fi’l(Rd)v
zigr = A (Yoo A (@)oo AV (#)Yjo0) 1= 0, N =1,y
Ty € X*(f)a
||='17* - $0||2 <R,
To,...,TN,Tx € R

e Variables: zo,..., N, T, f
o Problem data: F,''(R%), A, R, N

Difficulty: Optimization problem (P) is abstract, hard and infinite dimensional

Approach: Relax constraints in (P), reduce and reformulate as tractable finite dimensional
optimization problem

Note: Relaxing constraints in (P) may increase the maximum value. Sometimes relaxing
constraints does not increase the maximum value and gives tight bounds on the performance of A
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Performance estimation problems - The gradient method

For simplicity, we illustrate the methodology on gradient decent:

Gradient decent (GD) with constant step-size

o Pick f € F)'(R%), N€N, zg € R and h > 0
o Fori=0,...,N —1, let

zit1 = A ({25}g - {f @)Yos, {VF (25)Yio)

=x; — %Vf(l’i)
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Performance estimation problems - The gradient method

For GD, (P) becomes
maximize f(zn) — f(z«)

subject to  f € .7'%’1(1:{‘1)7
h
Tit1 =Ti— T

z+ € Xi(f),
llz« — @olly < R,

Vf(zi), i=0,...,N —1, (P-GD)

d
Zo,...,TN,Tx €ER

Manu Upadhyaya manu.up: trol.lth.se 2021-06-11 12/22




Performance estimation problems - The gradient method

A property
Property for functions in ]-'i‘l(Rd), e.g. see Nesterov (2018, Theorem 2.1.5)

Proposition 1

Suppose that f € J-—é"l(R‘i). Then
i IVf(@) = Vi3 < f@) = Fly) = (Vf(),z—y),

for all z,y € RY.

e Hence, know that

ﬁ IV f (i) = Vf ()5 < fzi) = fzj) = (Vf(zj),zi —5), i,5=0,...,N,;x (1)

e Idea: In (P-GD), drop the constraint that f € }'i’l(Rd), but keep (1). Moreover, replace
function and gradient evaluations with variables, i.e.

fl:f(w’b)? i=0,...,N,x,
gZ:Vf(x’L)> 1=0,...,N,x*.
Also, drop z« € X«(f), but keep g« = 0. This gives a relaxation of (P-GD) (and may
increase the maximum value). See the next slide
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Performance estimation problems - The gradient method

Relaxed PEP

maximize

subject to

Manu Upadhyaya manu.up:

f}\f_f*
1 ) -
5 lgi — g;ll5 < fi — fj — (g5, mi —xj), 1,5 =0,...,N, %,
h
Titl =Ti — 790 i=0,...,N—1,
lzs — zolly < R,
g« =0,
d
z0,..-, TN, T« € RY,
fos-o s N, fe €R,
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Performance estimation problems - The gradient method
Rewriting the relaxed PEP

Using standard tricks in the optimization literature, the relaxed PEP can be written as:

maximize

subject to

LR%5y

tr(GTA,,jG) 6 —0;, 0<i<j<N,
( )ga-—aj,ogj@gjv,
tr(GTC’G) §,i=0,...,N,
tr(GTDG+vuTG)< —8;,i=0,...,N,

5 e RNFL,
G¢e R(N+1)><d

for some matrices A; ;, B; j,C;, D; € SN+1 and any unit vector v € R?
e (G) is a so-called non-homogeneous quadratic matrix program (Beck, 2007)

e Proceed by relaxing (G) by dropping some of the constraints. See the next slide
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Performance estimation problems - The gradient method
Twice relaxed PEP

maximize LR2%8y

subject to  tr (GTAZ',LZ'G) <6;_1—6;,i=1,...,N,
tr (GTD;G +vul G) < =5, i=0,...,N, (G)
§e RV
Ge R(N+1)><d

e Recall that val(P-GD) < val(G) < val(G’). l.e. (G") is an upper bound on the worst-case
performance of GD

e Next, construct a Lagrangian dual problem to (G')
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Performance estimation problems - The gradient method

A dual to (G')

Consider (G') for any fixed h € R and L, R > 0. A Lagrangian dual of (G') is given by the following convex program:
1, .2
minimize ELR t
subject to  S(A,t) > 0, (DG)
reACRY,
teR
where A = {)\GRN ‘ Xig1 > Aiyi=1...,N—1, 1> AN, A 20,2‘:1,“.,1\7},
1—h)So+hS1 g N+2 N41
S\ t) = [( )qT 1l €8sVt g= (%2 = AL AN = Anor, 1 - Ax) € RV
221 —A1
—A1 2X2 — A2
— A2 2X3 — A2
So = € SN+11
—AN-1 2AN AN
=N 1
221 A2 — A1 AN —AN-—1 1—2An
A2 — A1 222 Ny = Ag—i L=y
S1 = e sN+1
Ny = Ng—il Ny = Aigeil 2AN 1—An
1 = My 1 = Ny 1l — Ny 1
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Performance estimation problems - The gradient method
Tight worst-case estimate

o Note that val(P-GD) < val(G) < val(G’) < val(DG’). In particular, any feasible point to
(DG’) will yield an upper bound to (P-GD)

Suppose that f € }'i’l(Rd), T« € X«(f), R >0 and let {xi}f\io be generated by GD with
0 < h <1 such that ||z« — zg||y < R. Then

LR?

flen) — f(zs) < INh+2

)

e Remark: The proof follows by finding a feasible point to (DG’)

Let L,R >0, N € N and d € N. Then for every h > 0, there exists ¢ € Fi’l(Rd) and zp € R4
such that

LR?

d(zn) — Pp(z+) = INh+2

where x  is the point after IV iterations of GD

e Remark: In particular, this shows that the bound in (2) is tight
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Performance estimation problems - Extensions in the literature

e Other measures of inaccuracy than f(zn) — f(x«):

IV f ()l

len — .l

minj—o,... .~ f(z:) — f(zs)

min;—o,.. .~ |V f(2:)l3

min;—o,.... N [|z; — 4|3

Add expectation E[:] everywhere for stochastic algorithms

e Introduce so-called interpolation/extension conditions for a priori provably tight worst-case
bounds. See e.g. Taylor et al. (2017)

e Other function classes F or even operator classes

e Other classes of algorithms A:

Manu Upadhyay

Subgradient, Nesterov's method, heavy ball method

Proximal point algorithm

Projected and proximal gradient, with accelerated/momentum versions

Douglas-Rachford /operator splitting (+— due to Carolina Bergeling and Pontus Giselsson)
Conditional gradient (Frank-Wolfe) method

Inexact gradient

Krasnoselskii-Mann and Halpern fixed-point iterations

Mirror descent

Stochastic methods: SAG, SAGA, SGD, etc.
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Performance estimation problems - Related line of work
IQCs

e A technique in the robust control literature is to use integral quadratic constraints (1QCs) to
capture features of the behavior of partially known components

e Can be used to study optimization algorithms described by a linear system interconnected in
feedback to an (possibly uncertain) nonlinear system representing the gradient

e Lessard et al. (2016) used this to study the rate of convergence of optimization algorithms
e Several papers in this direction followed (e.g one by Anders Rantzer)
e Benefit:
e Fast/scales well: Bisection search over a small LMI
e Limitation:

e Considers only asymptotic rates
e The rates are not necessarily tight, i.e. provides only sufficiency
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Performance estimation problems - What I'm looking at

Main idea:
e Use interpolation conditions from PEP framework
e Use algorithm formulation and Lyapunov functions as in IQC framework

e Goal is to provide conditions for tight worst-case performance in the combined framework.
At the very least conditions for good estimates of the worst-case performance

e Secondary goal would be design optimization algorithms that are optimal w.r.t. these
conditions

Approach:
e Algorithm A: Linear system with a nonlinear feedback given by some operator
e Operator class: Has interpolation condition that only involves quadratic inequalities

e Lyapunov functions: Quadratic anzats
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