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About me - Education

• BSc in mathematics (2015)
• Study abroad at University of California, Berkeley (2016-2017)
• MSc in engineering physics, specialization in financial modelling (2020)
• MSc in finance (2020)
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About me - Before joining the department
Summer 2017

• Worked on vision and tactile sensing for robotic manipulation using deep neural network
predictive models
• @ Sergey Levine’s research group at UC Berkeley
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About me - Before joining the department
Summer 2018

• Looked at stability issues of stochastic biochemical reaction networks (populations of a finite
number of species that evolve through predefined interactions)
• Automated construction of Foster-Lyapunov functions to prove ergodicity of continuous-time

Markov processes via convex optimization
• @ Mustafa Khammash’s research group at ETH Zürich, D-BSSE
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About me - Before joining the department
Master thesis

• Data-driven and non-parametric methods for covariance matrix regularization for portfolio
selection
• @ Lynx Asset Management in Stockholm
• Supervisors: Tobias Rydén, Magnus Wiktorsson, Pontus Giselsson, Frederik Lundtofte
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Performance estimation problems - The work this presentation is
based on

Performance of first-order methods for smooth convex minimization
(Drori and Teboulle, 2014)
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Performance estimation problems - Motivation

• Class of functions F :
• Collection of functions f : Rd → R with some properties
• Assume ∃x∗ ∈ X∗(f), where X∗(f) is the set of minimizers of f

• Want to minimize functions in F via some algorithm
• First-order black-box optimization method on F is an algorithm A:

• x0 ∈ Rd initial point
• f ∈ F fixed
• xi+1 = A

(
{xj}i

j=0 , {f (xj)}i
j=0 , {∇f (xj)}i

j=0

)
for each i = 0, . . . , N − 1

• Worst-case analysis: Given A, what is

max
f∈F

(f(xN )− f(x∗))?

• Worst-case design: Given some class of algorithms A, what is

A∗ = arg min
A∈A

(
max
f∈F

(f(xN )− f(x∗))
)

?

(We will not cover worst-case design today)
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Performance estimation problems - Assumptions

• Let L > 0. f ∈ F1,1
L (Rd) if and only if f : Rd → R is continuously differentiable, convex

and the gradient ∇f is L-Lipschitz continuous
• Let A be a first-order black-box optimization method on F1,1

L (Rd)

• Consider only f ∈ F1,1
L (Rd) such that X∗(f) := arg minx∈Rd f(x) is non-empty

• Let R > 0. For each f ∈ F1,1
L (Rd), consider only initial points x0 ∈ Rd such that there

exists an x∗ ∈ X∗(f) such that ‖x∗ − x0‖2 ≤ R
• A generates a finite sequence of length N + 1 (including the initial point)
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Performance estimation problems - The problem

maximize f(xN )− f(x∗)

subject to f ∈ F1,1
L (Rd),

xi+1 = A
(
{xj}ij=0 , {f (xj)}ij=0 , {∇f (xj)}ij=0

)
, i = 0, . . . , N − 1,

x∗ ∈ X∗(f),
‖x∗ − x0‖2 ≤ R,

x0, . . . , xN , x∗ ∈ Rd

(P)

• Variables: x0, . . . , xN , x∗, f

• Problem data: F1,1
L (Rd),A, R,N

Difficulty: Optimization problem (P) is abstract, hard and infinite dimensional
Approach: Relax constraints in (P), reduce and reformulate as tractable finite dimensional
optimization problem
Note: Relaxing constraints in (P) may increase the maximum value. Sometimes relaxing
constraints does not increase the maximum value and gives tight bounds on the performance of A
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Performance estimation problems - The gradient method

For simplicity, we illustrate the methodology on gradient decent:

Gradient decent (GD) with constant step-size

Pick f ∈ F1,1
L (Rd), N ∈ N, x0 ∈ Rd and h > 0

For i = 0, . . . , N − 1, let

xi+1 = A
(
{xj}ij=0 , {f (xj)}ij=0 , {∇f (xj)}ij=0

)
= xi −

h

L
∇f(xi)
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Performance estimation problems - The gradient method

For GD, (P) becomes

maximize f(xN )− f(x∗)

subject to f ∈ F1,1
L (Rd),

xi+1 = xi −
h

L
∇f(xi), i = 0, . . . , N − 1,

x∗ ∈ X∗(f),
‖x∗ − x0‖2 ≤ R,

x0, . . . , xN , x∗ ∈ Rd

(P-GD)
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Performance estimation problems - The gradient method
A property
Property for functions in F1,1

L (Rd), e.g. see Nesterov (2018, Theorem 2.1.5)

Proposition 1

Suppose that f ∈ F1,1
L (Rd). Then

1
2L
‖∇f(x)−∇f(y)‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ,

for all x, y ∈ Rd.

• Hence, know that

1
2L
‖∇f(xi)−∇f(xj)‖22 ≤ f(xi)− f(xj)− 〈∇f(xj), xi − xj〉 , i, j = 0, . . . , N, ∗ (1)

• Idea: In (P-GD), drop the constraint that f ∈ F1,1
L (Rd), but keep (1). Moreover, replace

function and gradient evaluations with variables, i.e.

fi := f(xi), i = 0, . . . , N, ∗,
gi := ∇f(xi), i = 0, . . . , N, ∗.

Also, drop x∗ ∈ X∗(f), but keep g∗ = 0. This gives a relaxation of (P-GD) (and may
increase the maximum value). See the next slide
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Performance estimation problems - The gradient method
A property
Property for functions in F1,1

L (Rd), e.g. see Nesterov (2018, Theorem 2.1.5)

Proposition 1

Suppose that f ∈ F1,1
L (Rd). Then

1
2L
‖∇f(x)−∇f(y)‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ,

for all x, y ∈ Rd.

• Hence, know that

1
2L
‖∇f(xi)−∇f(xj)‖22 ≤ f(xi)− f(xj)− 〈∇f(xj), xi − xj〉 , i, j = 0, . . . , N, ∗ (1)

• Idea: In (P-GD), drop the constraint that f ∈ F1,1
L (Rd), but keep (1). Moreover, replace

function and gradient evaluations with variables, i.e.

fi := f(xi), i = 0, . . . , N, ∗,
gi := ∇f(xi), i = 0, . . . , N, ∗.

Also, drop x∗ ∈ X∗(f), but keep g∗ = 0. This gives a relaxation of (P-GD) (and may
increase the maximum value). See the next slide

Manu Upadhyaya manu.upadhyaya@control.lth.se 2021-06-11 13 / 22



Performance estimation problems - The gradient method
A property
Property for functions in F1,1

L (Rd), e.g. see Nesterov (2018, Theorem 2.1.5)

Proposition 1

Suppose that f ∈ F1,1
L (Rd). Then

1
2L
‖∇f(x)−∇f(y)‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ,

for all x, y ∈ Rd.

• Hence, know that

1
2L
‖∇f(xi)−∇f(xj)‖22 ≤ f(xi)− f(xj)− 〈∇f(xj), xi − xj〉 , i, j = 0, . . . , N, ∗ (1)

• Idea: In (P-GD), drop the constraint that f ∈ F1,1
L (Rd), but keep (1). Moreover, replace

function and gradient evaluations with variables, i.e.

fi := f(xi), i = 0, . . . , N, ∗,
gi := ∇f(xi), i = 0, . . . , N, ∗.

Also, drop x∗ ∈ X∗(f), but keep g∗ = 0. This gives a relaxation of (P-GD) (and may
increase the maximum value). See the next slide

Manu Upadhyaya manu.upadhyaya@control.lth.se 2021-06-11 13 / 22



Performance estimation problems - The gradient method
Relaxed PEP

maximize fN − f∗

subject to
1

2L
‖gi − gj‖22 ≤ fi − fj − 〈gj , xi − xj〉 , i, j = 0, . . . , N, ∗,

xi+1 = xi −
h

L
gi, i = 0, . . . , N − 1,

‖x∗ − x0‖2 ≤ R,
g∗ = 0,

x0, . . . , xN , x∗ ∈ Rd,

f0, . . . , fN , f∗ ∈ R,

g0, . . . , gN , g∗ ∈ Rd
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Performance estimation problems - The gradient method
Rewriting the relaxed PEP

Using standard tricks in the optimization literature, the relaxed PEP can be written as:

maximize LR2δN

subject to tr
(
GTAi,jG

)
≤ δi − δj , 0 ≤ i < j ≤ N,

tr
(
GTBi,jG

)
≤ δi − δj , 0 ≤ j < i ≤ N,

tr
(
GTCiG

)
≤ δi, i = 0, . . . , N,

tr
(
GTDiG+ vuTi G

)
≤ −δi, i = 0, . . . , N,

δ ∈ RN+1,

G ∈ R(N+1)×d

(G)

for some matrices Ai,j , Bi,j , Ci, Di ∈ SN+1 and any unit vector v ∈ Rd

• (G) is a so-called non-homogeneous quadratic matrix program (Beck, 2007)
• Proceed by relaxing (G) by dropping some of the constraints. See the next slide
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Performance estimation problems - The gradient method
Twice relaxed PEP

maximize LR2δN

subject to tr
(
GTAi−1,iG

)
≤ δi−1 − δi, i = 1, . . . , N,

tr
(
GTDiG+ vuTi G

)
≤ −δi, i = 0, . . . , N,

δ ∈ RN+1,

G ∈ R(N+1)×d

(G’)

• Recall that val(P-GD) ≤ val(G) ≤ val(G’). I.e. (G’) is an upper bound on the worst-case
performance of GD
• Next, construct a Lagrangian dual problem to (G’)
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Performance estimation problems - The gradient method
A dual to (G’)
Lemma 1
Consider (G’) for any fixed h ∈ R and L,R > 0. A Lagrangian dual of (G’) is given by the following convex program:

minimize
1
2
LR

2
t

subject to S(λ, t) � 0,

λ ∈ Λ ⊆ RN
,

t ∈ R

(DG’)

where Λ =
{
λ ∈ RN

∣∣ λi+1 ≥ λi, i = 1 . . . , N − 1, 1 ≥ λN , λi ≥ 0, i = 1, . . . , N
}

,

S(λ, t) =
[

(1− h)S0 + hS1 q

qT t

]
∈ SN+2

, q = (λ1, λ2 − λ1, . . . , λN − λN−1, 1− λN ) ∈ RN+1
,

S0 =


2λ1 −λ1
−λ1 2λ2 −λ2

−λ2 2λ3 −λ2
. . .

. . .
. . .

−λN−1 2λN −λN
−λN 1

 ∈ SN+1
,

S1 =


2λ1 λ2 − λ1 · · · λN − λN−1 1− λN

λ2 − λ1 2λ2 λN − λN−1 1− λN

...
. . .

...
λN − λN−1 λN − λN−1 2λN 1− λN

1− λN 1− λN · · · 1− λN 1

 ∈ SN+1
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Performance estimation problems - The gradient method
Tight worst-case estimate
• Note that val(P-GD) ≤ val(G) ≤ val(G’) ≤ val(DG’). In particular, any feasible point to

(DG’) will yield an upper bound to (P-GD)

Theorem 1
Suppose that f ∈ F1,1

L (Rd), x∗ ∈ X∗(f), R > 0 and let {xi}Ni=0 be generated by GD with
0 < h ≤ 1 such that ‖x∗ − x0‖2 ≤ R. Then

f(xN )− f(x∗) ≤
LR2

4Nh+ 2
(2)

• Remark: The proof follows by finding a feasible point to (DG’)

Theorem 2
Let L,R > 0, N ∈ N and d ∈ N. Then for every h > 0, there exists φ ∈ F1,1

L (Rd) and x0 ∈ Rd

such that

φ(xN )− φ(x∗) =
LR2

4Nh+ 2

where xN is the point after N iterations of GD

• Remark: In particular, this shows that the bound in (2) is tight
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Performance estimation problems - Extensions in the literature

• Other measures of inaccuracy than f(xN )− f(x∗):
• ‖∇f(xN )‖2

2
• ‖xN − x∗‖2

2
• mini=0,...,N f(xi)− f(x∗)
• mini=0,...,N ‖∇f(xi)‖2

2
• mini=0,...,N ‖xi − x∗‖2

2
• Add expectation E[·] everywhere for stochastic algorithms

• Introduce so-called interpolation/extension conditions for a priori provably tight worst-case
bounds. See e.g. Taylor et al. (2017)
• Other function classes F or even operator classes
• Other classes of algorithms A:

• Subgradient, Nesterov’s method, heavy ball method
• Proximal point algorithm
• Projected and proximal gradient, with accelerated/momentum versions
• Douglas-Rachford/operator splitting (← due to Carolina Bergeling and Pontus Giselsson)
• Conditional gradient (Frank-Wolfe) method
• Inexact gradient
• Krasnoselskii-Mann and Halpern fixed-point iterations
• Mirror descent
• Stochastic methods: SAG, SAGA, SGD, etc.
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Performance estimation problems - Related line of work
IQCs

• A technique in the robust control literature is to use integral quadratic constraints (IQCs) to
capture features of the behavior of partially known components
• Can be used to study optimization algorithms described by a linear system interconnected in

feedback to an (possibly uncertain) nonlinear system representing the gradient
• Lessard et al. (2016) used this to study the rate of convergence of optimization algorithms
• Several papers in this direction followed (e.g one by Anders Rantzer)
• Benefit:

• Fast/scales well: Bisection search over a small LMI
• Limitation:

• Considers only asymptotic rates
• The rates are not necessarily tight, i.e. provides only sufficiency
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Performance estimation problems - What I’m looking at

Main idea:
• Use interpolation conditions from PEP framework
• Use algorithm formulation and Lyapunov functions as in IQC framework
• Goal is to provide conditions for tight worst-case performance in the combined framework.

At the very least conditions for good estimates of the worst-case performance
• Secondary goal would be design optimization algorithms that are optimal w.r.t. these

conditions
Approach:
• Algorithm A: Linear system with a nonlinear feedback given by some operator
• Operator class: Has interpolation condition that only involves quadratic inequalities
• Lyapunov functions: Quadratic anzats
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