
Using JitterTime to Analyze Transient Performance in Adaptive

and Reconfigurable Control Systems

Anton Cervin, Paolo Pazzaglia, Mohammadreza Barzegaran, Rouhollah Mahfouzi

Lund University, Scuola Superiore S’Anna, Technical University of Denmark, Linköping University



What is JitterTime?

A small Matlab toolbox for calculating the performance of a control application under

non-ideal timing conditions, e.g.,

lost samples or lost controls due to packet loss or execution overruns

delay and jitter due to resource contention (CPU, network, . . . )

aperiodic behavior due to clock drift or asynchronous nodes/execution



Ultimate goal: optimal co-design



Ultimate goal: optimal co-design

Measure the quality of control using some cost function, e.g.,

J = E

∫

T

0

(

xT (t)Q1x(t) + uT(t)Q2u(t)
)

dt

Would like to evaluate

J(controller, real-time implementation)



Other tools for analyzing real-time control performance

For example, two tools we have previously developed at Lund University:

Simulation using TrueTime (Henriksson & Cervin, 2002)

Any plant, network, controller models, any performance index

Any timing pattern (given by, e.g., scheduling policies)

Lengthy Monte Carlo runs needed to evaluate performance with some confidence

Analysis using Jitterbug (Lincoln & Cervin, 2002)

Linear systems driven by white noise, quadratic cost function

Timing in each (fixed) period given by discrete probability distributions

Stationary performance calculated analytically



TrueTime



Jitterbug

S(z)

S(z)

C(z)

C(z)

A(z)

A(z)

P (s)
y(t)u(t)

vc(t)

vd[k]

1

2

3

τsc

τca

Signal model Timing model

τsc and τca are random delays with given probability density functions

Quadratic cost function is evaluated analytically



JitterTime

JitterTime = Jitterbug analysis but with explicit timing

Signal model is similar to Jitterbug: Linear systems, white noise, quadratic cost

Timing is arbitrary; completely driven by the user

Timing from real system trace or from a discrete-event simulation

Performance of deterministic timing scenarios are evaluated exactly

Average performance of stochastic timing scenarios require Monte Carlo

simulations



JitterTime commands

Command Purpose

jtInit Initialize a new model

jtAddContSys Add a continuous-time linear system

jtAddDiscSys Add a discrete-time linear system

jtCalcDynamics Calculate the total system dynamics

jtPassTime,jtPassTimeUntil Simulate the passing of time

jtExecSys Execute a (version of a) discrete-time system



Internal workings

All subsystems are merged into a large state-space model

When time passes, the state covariance P evolves as

dP (t)

dt
= AP (t) + P (t)AT + Rc

When a discrete-time system s is executed at time tk, the covariance is updated

according to

P (t+

k
) = EsP (tk)ET

s + Rd

The accumulated cost between two discrete executions is given by

∆ J =

∫

tk+1

tk

tr QcP (t) dt,

All of the above can be calculated by expressions involving matrix exponentials



Simple example

Minimum-variance sampled-data control of an integrator driven by white noise,

ẏ(t) = u(t) + vc(t), J(t) =

∫

t

0

y2(τ) dτ

Process runs in open loop for 3 seconds before the controller is activated with h = 1



Simple example

Minimum-variance sampled-data control of an integrator driven by white noise,

ẏ(t) = u(t) + vc(t), J(t) =

∫

t

0

y2(τ) dτ

Process runs in open loop for 3 seconds before the controller is activated with h = 1

0 1 2 3 4 5 6

Time

0

1

2

3

P
ro

c
e
s
s
 v

a
ri

a
n
c
e

0 1 2 3 4 5 6

Time

0

2

4

6

A
c
c
u

m
u

la
te

d
 c

o
s
t



Use cases

1 Optimization of static schedules for Fog Control Nodes – M. Barzegaran et al. [1]

2 Analysis of execution overruns in real-time control tasks – P. Pazzaglia et al. [2]

3 Routing and scheduling of control applications over TSN Networks – R. Mahfouzi et al

[1] M. Barzegran, A. Cervin, P. Pop, “Towards quality-of-control-awarescheduling of industrial applications on fog computing

platforms,” in 1st Workshop on Fog Computing and the IoT (IoT-Fog’19), Montreal, Canada, 2019.

[2] P. Pazzaglia, C. Mandrioli, M. Maggio, A. Cervin, “DMAC: Deadline-miss-aware control,” in 31st Euromicro Conference on

Real- Time Systems (ECRTS’19), Stuttgart, Germany, 2019.



Optimization of static schedules for Fog Control Nodes

Controller consists of three tasks: Input (red), Calculate (dark green), Output (light green)

EDF schedule (default):

Control-aware schedule:



Example of results

S(z)C(z)A(z)

P (s)
y(t)u(t)

vc(t)

0 1 2 3 4 5 6
0

2

4

6

8

10

12

EDF

Control-aware

Time

A
c
c
u

m
u

la
te

d
C

o
s
t



Analysis of execution overruns in real-time control tasks

In a periodic control task, what to do if the deadline is missed?

time

0 1 2 3

Kill

Skip-next

Queue

• •

•

Co-simulation of the dynamic scheduling algorithm and the control performance index

(TrueTime + JitterTime)



Example of results

IO(z)

S(z) CA(z)

P (s)
y(t)u(t)

y[k] u[k]

vc

0 0.5 1 1.5 2 2.5 3 3.5 4

S
c
h
e
d
u
le

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

V
a
ri

a
n
c
e

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

C
o
s
t

τ1

τ2

τ3

IO

Time (s)



Conclusion

Trade-off: Expressiveness vs analytical power

JitterTime offers efficient analysis of very simple models:

Linear systems (including MIMO)

White noise disturbances

Quadratic cost function

All of the above parameters can be time-varying

Future work:

Julia implementation

Deterministic disturbances

Better numerical stability for large examples


