The Cost of Harmonicity

Anton Cervin

Background

How to optimally share a computing platform between n periodic tasks?

- Each task i is described by:
 - Period, T_i
 - Execution time, C_i
 - (Implicit) deadline, $D_i = T_i$

Total utilization: $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$

Two optimal scheduling algorithms

[Liu & Layland, 1973]

Rate-monotonic scheduling:

- Fixed task priorities
- Schedulability bound (sufficient): $U_b = n(2^{1/n} 1)$

Earliest-deadline-first (EDF) scheduling:

- Dynamic task priorities
- Schedulability bound (exact): $U_b = 1$

Optimal task period assignment

[Seto et al., 1996]

- The performance of each task is characterized by cost function, $J_i({\cal T}_i)$
- Period assignment: Solve the optimization problem

$$egin{array}{c} \min_{T_1,...,T_n} & \sum_{i=1}^n J_i(T_i) \ extbf{s.t.} & U \leq U_b \end{array}$$

Example: Affine cost functions

[Eker et al., 2000], [Cervin et al., 2002]

Assume that the cost of each task is described by

 $J_i(T_i) = v_i + w_i T_i$

The optimal periods are then given by

$$T_i^* = \sqrt{\frac{C_i}{w_i}} \frac{\sum_j \sqrt{w_j C_j}}{U_b}$$

Harmonic task periods

[Real-time systems folklore]

Harmonic periods: $\forall i,j \colon \frac{T_i}{T_j} \in \mathbb{N} \text{ or } \frac{T_j}{T_i} \in \mathbb{N}$

Advantages:

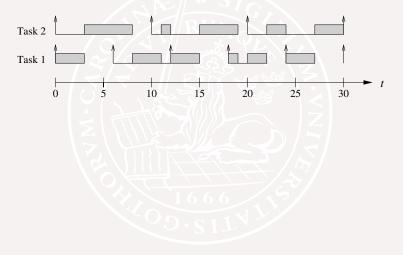
- U_b = 1 also under rate-monotonic scheduling
- Constant execution times ⇒ no jitter
- Short hyperperiod

Disadvantage:

Must deviate from the "optimal" periods

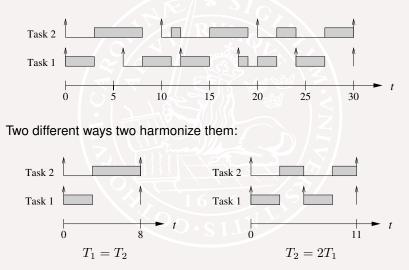
Example

EDF scheduling with two tasks, $T_1 = 6$, $T_2 = 10$, $C_1 = 3$, $C_2 = 5$:



Example

EDF scheduling with two tasks, $T_1 = 6$, $T_2 = 10$, $C_1 = 3$, $C_2 = 5$:



Questions

- How to perform the harmonization?
- What is the cost of deviating from the optimal task periods?

Algorithm 1 – Simple harmonization

[Morteza et al., 2016]

Assume set of increasing optimal periods $T^* = [T_1^* \dots T_n^*]$

- 1: $T_1 \leftarrow T_1^*$ 2: for $i \leftarrow 2 \dots n$ do 3: $T_i \leftarrow \left\lceil \frac{T_i^*}{T_{i-1}} \right\rceil T_{i-1}$
- 4: end for
- 5: /* Rescale to obtain U = 1 */
- 6: $U \leftarrow \sum_{i=1}^{n} C_i / T_i$ 7: $T \leftarrow UT$

Theorem

[Morteza et al., 2016]

Assume $U_b = 1$ and linear cost functions, $J_i = w_i T_i$.

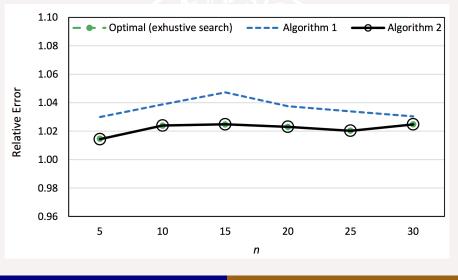
The relative cost of applying Algorithm 1 is smaller than 2:

$$\frac{J}{J^*} = \frac{\sum_{i=1}^n w_i T_i}{\sum_{i=1}^n w_i T_i^*} < 2$$

(Proof: In the worst case, each period (except the first one) doubles, which doubles the cost. Rescaling does not make things worse.)

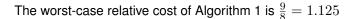
Average results on synthetic task sets

[Morteza et al., 2016]



Anton Cervin The Cost of Harmonicity

A stronger theorem



Proof

Scale the weights w_i so that

$$J^* = \sum_{i=1}^n w_i T_i^* = 1$$

implying

$$U_{i}^{*} = \frac{C_{i}}{T_{i}^{*}} = \sqrt{w_{i}C_{i}} = w_{i}T_{i}^{*} = J_{i}^{*}$$

Harmonizing, the period of each task $2, \ldots, n$ is extended as

$$\hat{T}_i = (1 + \beta_i)T_i^*, \quad 0 \le \beta_i \le 1$$

After rescaling, the final cost becomes

$$J = \underbrace{\left(1 + \sum_{i=2}^{n} \beta_i U_i^*\right)}_{\text{extension}} \underbrace{\left(1 - \sum_{i=2}^{n} \frac{\beta_i}{1 + \beta_i} U_i^*\right)}_{\text{rescaling to } U = 1}$$

Proof, cont'd

$$J = \left(1 + \sum_{i=2}^{n} \beta_i U_i^*\right) \left(1 - \sum_{i=2}^{n} \frac{\beta_i}{1 + \beta_i} U_i^*\right)$$

This function is maximized when $\beta_i = 1$ and $\sum_{i=2}^n U_i^* = \frac{1}{2}$, yielding the worst-case cost

$$J_{wc} = (1 + \frac{1}{2})(1 - \frac{1}{4}) = \frac{9}{8}$$

Conjecture – optimal harmonization

The worst-case relative cost of an *optimally* harmonized task set with linear cost functions is

$$J_{wc}^* = \frac{1}{2} (\ln 2)^{-2} \approx 1.041$$

(Optimal: Exhaustive search among all possible harmonizations to find the one with the smallest cost.)

Algorithm for optimal harmonization

1: for
$$\forall \alpha \in [\frac{1}{2}, 1]$$
 do
2: $T'_0 \leftarrow \alpha T_1^*$
3: for $i \leftarrow 1 \dots n$ do
4: $T'_i \leftarrow \left[\frac{T_i^*}{T'_{i-1}}\right] T'_{i-1}$
5: end for
6: // Rescale to full utilization
7: $U \leftarrow \sum_{i=1}^n C_i/T'_i$
8: $T' \leftarrow UT'$
9: $J \leftarrow \sum_{i=1}^n w_i T'_i$
10: if $J < J_{min}$ then
11: $T \leftarrow T'$
12: end if
13: end for

(Conjecture: A factorial number of α values need to be tested)

Conjecture – optimal harmonization

The worst case occurs when

$$C_i = 2^{\frac{i-1}{n}}, \quad w_i \propto \frac{1}{C_i}$$

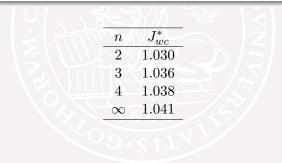
Example (n = 2): $C_1 = 1$, $C_2 = \sqrt{2}$, $T_1^* = 2$, $T_2^* = 2\sqrt{2}$

$$\Rightarrow \frac{J}{J^*} = \frac{4+3\sqrt{2}}{8} \approx 1.030$$

Conjecture – optimal harmonization

For a given n, the worst-case relative cost is

$$J_{wc}^{*}(n) = \frac{1}{2n^{2}\left(2^{\frac{1}{n}} + 2^{-\frac{1}{n}} - 2\right)}$$

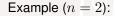


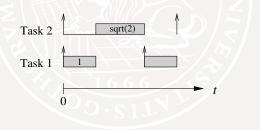
Relation to rate-monotonic schedulability

Worst-case scenario for harmonization

 \Leftrightarrow

Worst-case scenario for rate-monotonic schedulability





Corollary

Harmonizing a rate-monotonic-schedulable set of periodic tasks with linear cost functions always yields a **lower** cost (even with Algorithm 1)

Conclusion

General recommendation: If possible, choose harmonic periods for your tasks.

- The cost of harmonization is very small
- The gain in terms of rate-monotonic schedulability is large
- Everything, from scheduling analysis to control design, becomes easier with harmonic periods