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Background

How to optimally share a computing platform between n periodic
tasks?
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Each task i is described by:

Period, Ti
Execution time, Ci
(Implicit) deadline, Di = Ti

Total utilization: U =
∑n
i=1

Ci
Ti
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Two optimal scheduling algorithms

[Liu & Layland, 1973]

Rate-monotonic scheduling:

Fixed task priorities

Schedulability bound (sufficient): Ub = n(21/n − 1)

Earliest-deadline-first (EDF) scheduling:

Dynamic task priorities

Schedulability bound (exact): Ub = 1
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Optimal task period assignment

[Seto et al., 1996]

The performance of each task is characterized by cost function,
Ji(Ti)
Period assignment: Solve the optimization problem

min
T1,...,Tn

n∑
i=1

Ji(Ti)

s.t. U ≤ Ub
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Example: Affine cost functions

[Eker et al., 2000], [Cervin et al., 2002]

Assume that the cost of each task is described by

Ji(Ti) = vi + wiTi

The optimal periods are then given by

T ∗i =
√
Ci
wi

∑
j

√
wjCj

Ub
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Harmonic task periods

[Real-time systems folklore]

Harmonic periods: ∀i, j: Ti
Tj
∈ N or

Tj
Ti
∈ N

Advantages:

Ub = 1 also under rate-monotonic scheduling

Constant execution times⇒ no jitter

Short hyperperiod

Disadvantage:

Must deviate from the “optimal” periods
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Example

EDF scheduling with two tasks, T1 = 6, T2 = 10, C1 = 3, C2 = 5:

Task 2

t
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Task 1

Two different ways two harmonize them:
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Task 1

T1 = T2 T2 = 2T1
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Questions

1 How to perform the harmonization?

2 What is the cost of deviating from the optimal task periods?
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Algorithm 1 – Simple harmonization

[Morteza et al., 2016]

Assume set of increasing optimal periods T ∗ = [T ∗1 . . . T ∗n ]

1: T1 ← T ∗1
2: for i← 2 . . .n do

3: Ti ←
⌈
T ∗i
Ti−1

⌉
Ti−1

4: end for

5: /* Rescale to obtain U = 1 */
6: U ←

∑n
i=1Ci/Ti

7: T ← UT
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Theorem

[Morteza et al., 2016]

Assume Ub = 1 and linear cost functions, Ji = wiTi.

The relative cost of applying Algorithm 1 is smaller than 2:

J

J∗
=
∑n
i=1wiTi∑n
i=1wiT

∗
i

< 2

(Proof: In the worst case, each period (except the first one) doubles,
which doubles the cost. Rescaling does not make things worse.)
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Average results on synthetic task sets

[Morteza et al., 2016]
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A stronger theorem

The worst-case relative cost of Algorithm 1 is 9
8 = 1.125
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Proof

Scale the weights wi so that

J∗ =
n∑
i=1

wiT
∗
i = 1

implying

U∗i = Ci
T ∗i

=
√
wiCi = wiT

∗
i = J∗i

Harmonizing, the period of each task 2, . . . , n is extended as

T̂i = (1 + βi)T ∗i , 0 ≤ βi ≤ 1

After rescaling, the final cost becomes

J =
(

1 +
n∑
i=2

βiU
∗
i

)
︸ ︷︷ ︸

extension

(
1−

n∑
i=2

βi
1+βi

U∗i

)
︸ ︷︷ ︸

rescaling to U = 1
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Proof, cont’d

J =
(

1 +
n∑
i=2

βiU
∗
i

)(
1−

n∑
i=2

βi
1+βi

U∗i

)

This function is maximized when βi = 1 and
∑n
i=2 U

∗
i = 1

2 , yielding
the worst-case cost

Jwc = (1 + 1
2)(1− 1

4) = 9
8
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Conjecture – optimal harmonization

The worst-case relative cost of an optimally harmonized task set with
linear cost functions is

J∗wc = 1
2(ln 2)−2 ≈ 1.041

(Optimal: Exhaustive search among all possible harmonizations to find
the one with the smallest cost.)
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Algorithm for optimal harmonization

1: for ∀α ∈ [1
2 , 1] do

2: T ′0 ← αT ∗1
3: for i← 1 . . .n do

4: T ′i ←
⌈
T ∗i
T ′i−1

⌉
T ′i−1

5: end for
6: // Rescale to full utilization
7: U ←

∑n
i=1Ci/T

′
i

8: T ′ ← UT ′

9: J ←
∑n
i=1wiT

′
i

10: if J < Jmin then
11: T ← T ′

12: end if
13: end for

(Conjecture: A factorial number of α values need to be tested)
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Conjecture – optimal harmonization

The worst case occurs when

Ci = 2
i−1

n , wi ∝ 1
Ci

Example (n = 2): C1 = 1, C2 =
√

2, T ∗1 = 2, T ∗2 = 2
√

2

⇒ J

J∗
= 4 + 3

√
2

8 ≈ 1.030
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Conjecture – optimal harmonization

For a given n, the worst-case relative cost is

J∗wc(n) = 1
2n2(2 1

n + 2−
1
n − 2

)
n J∗wc
2 1.030
3 1.036
4 1.038
∞ 1.041
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Relation to rate-monotonic schedulability

Worst-case scenario for harmonization

⇔

Worst-case scenario for rate-monotonic schedulability

Example (n = 2):

1

0

Task 1

Task 2

t

sqrt(2)

1
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Corollary

Harmonizing a rate-monotonic-schedulable set of periodic tasks with
linear cost functions always yields a lower cost (even with Algorithm 1)
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Conclusion

General recommendation: If possible, choose harmonic periods for
your tasks.

The cost of harmonization is very small

The gain in terms of rate-monotonic schedulability is large

Everything, from scheduling analysis to control design, becomes
easier with harmonic periods
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