Friday Seminar: Event-Based Estimation with Stochastic Triggering

Marcus T. Andrén

Dept. of Automatic Control Lund Institute of Technology

Outline of this seminar

- **•** The Remote Estimation Problem
- **Current Research: Stochastic Triggering**
- **•** Further Work & Summary

Event-Based Estimation: when sensing and transmitting measurements has a **cost**.

Networked Control Systems

- Increasing use of wireless networks in control
- Shared network bandwidth, energy consumption and computations should be efficiently used

Smart Sensors

- Wireless, programmable transceiver modules
- Opportunity for simple event-generation

The Remote Estimation Problem

$$
x_{k+1} = Ax_k + w_k, \quad y_k = Cx_k + v_k
$$

$$
w_k \sim N(0, Q), \quad v_k \sim N(0, R)
$$

$$
\gamma_k = \begin{cases} 0 \implies \text{No transmission} \\ 1 \implies \text{Transmission} \end{cases}
$$

Goal:

Design a triggering condition, derive the corresponding MMSE-estimator

Simplest possible:

Intermittent Kalman Filter [Sinopoli et.al 2004]

Time Update:

$$
\hat{x}_{k+1|k} = A\hat{x}_{k|k}
$$

$$
\hat{y}_{k+1|k} = C\hat{x}_{k+1|k}
$$

$$
P_{k+1|k} = AP_{k|k}A^{T} + Q
$$

Measurement Update:

$$
\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + \gamma_k K_{k+1} [y_{k+1} - \hat{y}_{k+1|k}]
$$

$$
P_{k+1|k+1} = [I - \gamma_k K_{k+1} C] P_{k+1|k}
$$

- $\gamma_k = 0 \implies$ just propagate prediction
- Simple, but disregards information from triggering condition!
- However, for e.g random packet drops, intermittent Kalman is optimal

Many event-generators based on the **Send-on-Delta** rule:

Send-on-Delta

$$
\gamma_k = \begin{cases} 1, & \text{if } |y_k - \mu_k| \ge \Delta \\ 0, & \text{else} \end{cases}
$$

- Sensor compares collected measurement y_k to prediction μ_k . Transmits if difference is larger than Δ
- Commonly, $\mu_k = y_{last}$
- By varying ∆, different average communication rates can be achieved

Probability Density using SoD

 $\gamma_k = 0 \implies$ no longer Gaussian!

- **Particle Filter** Good performance, but heavy online computations, approximate, and difficult to analyze.
- **Approximate as Gaussian** Simpler analysis, but approximation might be poor.
- **Other Triggering Conditions** E.g Stochastic Triggering

Probability Density using SoD

$\gamma_k = 0 \implies$ no longer Gaussian!

- **Particle Filter** Good performance, but heavy online computations, approximate, and difficult to analyze.
- **Approximate as Gaussian** Simpler analysis, but approximation might be poor.
- **Other Triggering Conditions** E.g Stochastic Triggering

Probability Density using SoD

 $\gamma_k = 0 \implies$ no longer Gaussian!

Solution?

- **Particle Filter** Good performance, but heavy online computations, approximate, and difficult to analyze.
- **Approximate as Gaussian** Simpler analysis, but approximation might be poor.
- **Other Triggering Conditions** E.g Stochastic Triggering

Outline

Outline of this seminar

The Remote Estimation Problem \bullet

Current Research: Stochastic Triggering

Further Work & Summary

Idea: A "lazy" sensor which chooses to transmit according to certain probability

Stochastic Triggering:

$$
\xi_k \sim U(0, 1), \quad \Phi(y_k - \mu_k) \in [0, 1]
$$

$$
\gamma_k = \begin{cases} 0 \text{ if } \xi_k \le \Phi(y_k - \mu_k) \\ 1 \text{ else} \end{cases}
$$

$$
\implies \Pr(\gamma_k = 0) = \Phi(y_k - \mu_k)
$$

Nice properties when Φ is a scaled Gaussian:

$$
\Phi(y_k - \mu_k) = \exp[-\frac{1}{2}(y_k - \mu_k)^T Y (y_k - \mu_k)]
$$

Stochastic Triggering:

$$
\xi_k \sim U(0, 1), \quad \Phi(y_k - \mu_k) \in [0, 1]
$$

$$
\gamma_k = \begin{cases} 0 \text{ if } \xi_k \le \Phi(y_k - \mu_k) \\ 1 \text{ else} \end{cases}
$$

$$
\implies \Pr(\gamma_k = 0) = \Phi(y_k - \mu_k)
$$

Nice properties when Φ is a scaled Gaussian:

$$
\Phi(y_k - \mu_k) = \exp[-\frac{1}{2}(y_k - \mu_k)^T Y (y_k - \mu_k)]
$$

Stochastic Triggering:

$$
\xi_k \sim U(0, 1), \quad \Phi(y_k - \mu_k) \in [0, 1]
$$

$$
\gamma_k = \begin{cases} 0 \text{ if } \xi_k \le \Phi(y_k - \mu_k) \\ 1 \text{ else} \end{cases}
$$

$$
\implies \Pr(\gamma_k = 0) = \Phi(y_k - \mu_k)
$$

Nice properties when Φ is a scaled Gaussian:

$$
\Phi(y_k - \mu_k) = \exp[-\frac{1}{2}(y_k - \mu_k)^T Y (y_k - \mu_k)]
$$

Stochastic Triggering:

$$
\xi_k \sim U(0, 1), \quad \Phi(y_k - \mu_k) \in [0, 1]
$$

$$
\gamma_k = \begin{cases} 0 \text{ if } \xi_k \le \Phi(y_k - \mu_k) \\ 1 \text{ else} \end{cases}
$$

$$
\implies \Pr(\gamma_k = 0) = \Phi(y_k - \mu_k)
$$

Nice properties when Φ is a scaled Gaussian:

Decision function:

$$
\Phi(y_k - \mu_k) = \exp[-\frac{1}{2}(y_k - \mu_k)^T Y (y_k - \mu_k)]
$$

The Decision Function

Scalar case:

Design variable *Y* used in same way as ∆ \bullet

$Pr(\gamma_k = 0) = \Phi(\gamma_k - \mu_k)$ has Gaussian shape ⇒ closed-form MMSE estimator derivable with Bayes' theorem

Assume sensor transmitted *l* steps ago. Let $\mu_k = y_{last} = y_{k-1}$ **Stochastic Send-on-Delta MMSE Estimator:**

 $Pr(\gamma_k = 0) = \Phi(\gamma_k - \mu_k)$ has Gaussian shape

⇒ closed-form MMSE estimator derivable with Bayes' theorem

Assume sensor transmitted *l* steps ago. Let $\mu_k = y_{last} = y_{k-l}$ **Stochastic Send-on-Delta MMSE Estimator:**

 $Pr(\gamma_k = 0) = \Phi(\gamma_k - \mu_k)$ has Gaussian shape

 \implies closed-form MMSE estimator derivable with Bayes' theorem

Assume sensor transmitted *l* steps ago. Let $\mu_k = y_{last} = y_{k-l}$ **Stochastic Send-on-Delta MMSE Estimator:**

The Choice of *µ^k*

Others were having the same idea...

In [Shi et.al 2016] two other choices of μ_k are considered:

• Stable systems will have zero-mean v_k in stationarity

- Works both for stable and unstable systems
- **Note:** Requires feedback from observer!

First-order example from [Shi et al, 2016]:

$$
A = 0.95
$$
, $C = 1$, $Q = 0.8$, $R = 1$

First-order example from [Shi et al, 2016]:

$$
A = 0.95
$$
, $C = 1$, $Q = 0.8$, $R = 1$

Marcus T. Andrén [Friday Seminar:Event-Based Estimation with Stochastic Triggering](#page-0-0)

First-order example from [Shi et al, 2016]:

$$
A = 0.95
$$
, $C = 1$, $Q = 0.8$, $R = 1$

First-order example from [Shi et al, 2016]:

$$
A = 0.95
$$
, $C = 1$, $Q = 0.8$, $R = 1$

First-order example from [Shi et al, 2016]:

$$
A = 0.95
$$
, $C = 1$, $Q = 0.8$, $R = 1$

First-Order Example

- A lot to gain by using triggering information
- Stoch. SoD better than Open-Loop, closer to Closed-Loop. **No feedback required**
- \bullet Is this always the case?

Try again with poorly damped ($\zeta \approx 0.05$) and noisy 2nd order system:

$$
A = \begin{bmatrix} 0.8 & -0.55 \\ 0.55 & 0.8 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}
$$

$$
Q = \begin{bmatrix} 10^{-2} & 0 \\ 0 & 10^{-2} \end{bmatrix}, R = 2
$$

First-Order Example

- A lot to gain by using triggering information
- **Stoch. SoD better than Open-Loop, closer to Closed-Loop. No feedback required**
- \bullet Is this always the case?

Try again with poorly damped ($\zeta \approx 0.05$) and noisy 2nd order system:

$$
A = \begin{bmatrix} 0.8 & -0.55 \\ 0.55 & 0.8 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}
$$

$$
Q = \begin{bmatrix} 10^{-2} & 0 \\ 0 & 10^{-2} \end{bmatrix}, R = 2
$$

For fast and/or noisy systems, $\mu_k = y_{k-l}$ is a poor prediction. **Stoch. SoD worse than Open-Loop!**

Q: **Can we improve while keeping** *µ^k* **simple?**

For stable systems, in stationarity:

Prediction

$$
\mu_k = E\{y_k | y_{k-l}\} = S_l y_{k-l}, \quad S_l = CA^l \Sigma C^T [C \Sigma C^T + R]^{-1}
$$

since
$$
E\{x_k\} = 0
$$
 and $E\{x_k x_k^T\} = \Sigma$ where $\Sigma = A\Sigma A^T + Q$

- A simple scaling, dependent on *l*
- \bullet Pre-compute S_l and store in look-up table
- MMSE Estimator same as for regular Stoch. SoD. Just change *yk*−*l*</sub> to *Sl yk*−*l*.

Open-Loop or Stoch. SoD?

Open-Loop: ${}^{\prime\prime}S_l = 0$ " Stoch. SoD: ${}^{\prime\prime}S_l = 1$ "

Outline

Outline of this seminar

- The Remote Estimation Problem
- **Current Research: Stochastic Triggering**

Further Work & Summary

Desirable to know communication rate for given *Y*

- **Open-Loop:** Closed-form expression exists
- **Closed-Loop:** (Loose) Bounds exists
- **Stoch. SoD:** Pr(*γ^k* = 0| sensor info) not time invariant, depends on explicit value of *yk*−*^l*
- **Modified Stoch. SoD:** Pr(*γ^k* = 0|sensor info) independent of explicit value of *yk*−*^l* . Current work.

- Covariance bounds exists. **Tighter bounds** on covariance?
- **Controller co-design** when using Stochastic Triggering?

- **When sensing and transmitting has a cost**, consider event-based estimation
- Potential for greater resource efficiency in e.g **wireless network applications**
- Current research: Event-Based Estimation using **Stochastic Triggering**
- Stoch. SoD with Simple Prediction outperforms regular Stoch. SoD and Open-Loop **without feedback**
- Properties such as average communication rate still open.

Questions?