QOS Management for camera networks

Gautham Nayak Seetanadi ¹, Martina Maggio, Karl-Erik Årzen ¹ Luis Almeida ²

¹Department of Automatic Control, Lund University

²University of Porto

Introduction

Introduction to FTT-SE

The Current Setup

QoS Approach

Preliminary Results

2/15 Gautham: QOS Management for camera networks

Introduction

- Adaptive resource management for camera networks
- Connected at a local level through Ethernet connection
- Contracts define the resolution and frame rates of the cameras
- Based on previous work by Martina on multicore systems

Resource Manager for Multicore Systems

- Dynamically allocates resources and applications choose their service levels
 - $\lambda_i = 0$ means that application adjusts
 - $\lambda_i = 1$ means that the manager adjusts
- Decides on the allocated amount depending upon the matching function
 - $f_i < 0$ means matching is scarce
 - $f_i > 0$ means matching is abundant
 - $f_i = 0$ means matching is perfect

FTT-SE

- Flexible Time Triggered paradigm triggered by a master
- Dynamic reconfiguration of slaves
- Admission control
- Traffic controlled by a master on network
- Switched ethernet, FTT-SE is implemented on COTS switch

Elementary Cycle

- EC is the traffic schedule in FTT-SE
- The elementary cycle consists of [TM], Async and Sync windows
- Synchronous messages are scheduled by the master.
- Asynchronous messages are sent by the slaves

The Camera Setup

4 nodes connected to a switch.

- One master node, one monitor, and two cameras.
- Master
 - Allocates bandwidths for slaves connected.
 - Notifies BW changes
- Monitor
 - Receives the data/image
 - Monitors BW usage
 - Notifies master for BW changes
- Currently only uses Async messages

A look at the cameras

Cameras

- Off the shelf Logitech cameras
- Captures, encodes and sends the data/image to monitor
- JPEG compression using OpenCV
- JPEG is suitable to process and store images
- Buffer size is varied to fit image

Overview

What do they know

Master

- Slave channels, Global settings
- Monitor
 - Global settings, Camera contract, Camera state
- Cameras
 - Camera Contract, Camera State
- This allows two control loops. Global QoS and camera
 - Global QoS approach Game theoretic resource manager
 - On the cameras PI controller

QoS Approach

Steady state calculation

$$\begin{array}{lcl} B_{i}^{ss} & = & b_{i}^{ss}B_{c} \\ b_{i}^{ss} & = & w^{p}\frac{\rho_{i}}{\sum_{j=1}^{n}\rho_{j}} + w^{q}\frac{q_{i}}{\sum_{j=1}^{n}q_{j}^{a}} \end{array}$$

Error function

$$f_i = \alpha \left(\frac{B_i^{ss} - B_i}{B_i^{ss}}\right)_{[-1\ 1]} + (1 - \alpha) \left(\frac{R_i^{ss} - R_i}{B_i^{ss}}\right)_{[-1\ 1]}$$

- if f_i is less than 0, matching is scarce
- if f_i is greater than 0, matching is abundant
- if f_i is equal to 0, matching is perfect

Game Theoretic Manager

- Present in the Monitor
- Does the following
 - 1. Measure the current performance $f_i(t)$
 - 2. Updates the channel as

$$bw_i(t+1) = bw_i(t) + \epsilon(-\lambda_i f_i(t) + \sum_{j=1}^n \lambda_j f_j(t) \ bw_i(t))$$

3. Computes value of bandwidth to allocate

$$B_i(t) = n * bw_i(t+1)$$

Preliminary Results

250 ž

SSIM and f_i

Thank you