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o Started February 2012

@ Working on JModelica.org: Open-source framework for
large-scale dynamic optimization

@ Looking for ways to make dynamic optimization algorithms more
o efficient
o reliable

@ accessible
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Dynamic optimization

@ Optimization problems with differential equations as constraints
@ Applications include

e optimal control (open or closed loop)

e parameter estimation or optimization

o state estimation (moving horizon estimation)

o experiment design
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Optimal control

ty
minimize oty x(ty))+ | L(x(t),u(t))dt,
0
with respectto  tf,z,u,
subject to = f(x(t),u(t)),
z(0) = zo,

gi(t,x(t),u(t)) <0,

P(a(ty)) =0,
Vit e [O,tf].
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Optimal control with DAE

Differential-algebraic equation (DAE) instead of explicit ODE:

minimize  o(tpalt)u(t)+ [ LG, u(t)d,
0
with respectto  tr,z,y,u
subject to F(2(t),z(t),y(t),u(t))) =0,
x(0) = xo,

gi(t,x(t),y(1),u(t)) <

Pla(ty),ylty)) =0,
VtE[O,tf}.
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Simulation of DAEs

@ DAE systems can be simulated with specialized DAE solvers

@ Common to instead transform (reduce) the DAE to an ODE and
apply ODE solvers

@ These transformations have many benefits, but a few drawbacks

7/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



DAE

Up = sin(t)
U1:R1'i1
ug = Ry -1y
ug = R3-1i3
uL:L-&iL
Uy =u1 +us
ur, = u1 +us9
us = ug

— o =11+1L
11 =19 +13
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ODE

d. _
at L~

sin(t)
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Transformation techniques

Going from DAE to ODE in general involves many steps:

1. Alias elimination  Get rid of equations and corresponding
variables of the form x =y =0

2. Index reduction  Perform index reduction until DAE is
index 1 (dummy derivatives)

3. Matching Match variables and equations (Hopcroft-Karp)

4. BLT Transform the system to block-lower triangular
(BLT) form with blocks of minimal size (Tarjan)

5. Tearing Tear algebraic loops

6. Solve loops Solve algebraic loops (Newton or LU)

Steps 1 and 5 are optional and done for performance.
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BLT example

The block-lower triangular (BLT) transformation is central. Example:

der(iL

— -
s 4 2 5

u3

@

o (51 o~
uo-sin(tim)®] = -
u2-u3 () ]

u2-i2 N )
i1-(i2+i3)
u3-i3
u0-(ul+uld)@® e o
ul-il [ )
i0-(i1+iL) [ :
uL-(ul+u2) o ) )
uL-der(iL) o ¢

@ Allows state derivatives & and algebraic variables y to be solved
for sequentially (in terms of state & and input u), resulting in ODE

@ Non-scalar and/or nonlinear blocks require numerical treatment
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Causalization for dynamic optimization

@ DAE-constrained optimization traditionally done using full DAE

@ Research idea: Utilize some of the transformation techniques for
DAE simulation for optimization

@ For simulation, goal is to get equivalent ODE

@ My goal is instead to get the equivalent (reduced) DAE that is
most suitable for numerical optimization
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Elimination techniques

1. Alias elimination Get rid of equations and corresponding
variables of the form z +y =0

2. Index reduction Perform index reduction until DAE is
index 1 (dummy derivatives)

3. Matching Match variables and equations (Hopcroft-Karp)

4. BLT Transform the system to block-lower triangular
(BLT) form with blocks of minimal size (Tarjan)

5. Tearing Tear algebraic loops

6—Sotvetoops Solve algebraic loops (Newton or LU)

7. Sparsity preservation Undo some parts of steps 4 and 5
to preserve sparsity
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9 Tearing
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Linear tearing

@ Used to improve efficiency when solving Az = b when A is
sparse but without significant structure

Nt

such that A is easy to invert and D is small

@ Permute A to get

@ Solution is then
T = (D - CA”B) - (b2 -~ CAflbl)

zy=A"" <b1 ~B(D-ca'B) " (b~ CA‘161)>

e D —CA~!'Bis the Schur complement of block A
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Linear tearing in BLT

@ In the BLT form, we use linear tearing for linear, non-scalar blocks
o Make A lower triangular (invert by forward substitution)
@ Terminology:
Causalized variables x1 € R™
Tearing variables x9 € R™
Causalized equations Axq + Bxo = by € R™
Tearing residuals Cz1+ Dxo = by € R™
@ Inverting A has cost O((n. +n¢)?)

@ Using Schur complement when A is lower triangular, cost is
instead O(n2n; +nens +n3)

@ Gotrid of O(n?) = we want few tearing variables

15/26 Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization



Tearing example

BLT with tearing

BLT without tearing
) )
o o M o - o o ™M o N -4 @
uO-sin(tim@ SN ® 5 5 24 2 35 © uO-sin(timw 5 52 Y 522 35 o
u2-u3 [ o u3-i3 [
wi2 e e uo-(ui+ud)e (@ [ @ |
i1-(i2+i3) L) ° ul-i1 )
u3-i3 o0 i1-(2+i3) °
uo-(ul+u3)@ e e u2-i2 @]
ul-i1 ) wu e ®. |
i0-(i1+iL) ° i0-(i1+iL) ° °
uL-(ul+u2) [ ] [ ] uL-(ul+u2) [ ] ] )
uL-der(iL) °o ¢ uL-der(iL) °o ¢
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Selecting tearing variables and residuals

@ Finding a minimal set of tearing variables and residuals such that
A is lower triangular is NP-hard

@ However, some choices of tearing variables/residuals will cause
ill-conditioned Schur complement!

@ So even if it were tractable to minimize n;, would often be bad
@ Selection either by heuristic algorithms, or manually by experts

@ The automatic tearing in Dymola is a trade secret and one of the
major reasons of its success
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Nonlinear tearing

@ For nonlinear systems F'(x) = 0, the main idea is the same

@ Tear to create partition

T T2

rl 0 *7

* 1 0 *
Fy

0

* ox % 1| x -0 x|,

* % % | * *
Fy

O B

where F is lower triangular and constant along diagonal

@ F} nonlinear w.r.t. x1, but easy to invert by forward substitution
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Skipping algebraic loops

@ When transforming all the way to an ODE, we need to
numerically solve the tearing residuals

o LU decomposition for linear blocks, Newton for nonlinear blocks

@ The resulting ODE is thus not on closed form, and takes a long
time to evaluate the right-hand side of

@ Simply leave the tearing residuals, yielding a smaller DAE with
cheap residuals

@ Consequently no point in solving for the state derivatives —
always choose all state derivatives as tearing variables
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Sparsity preservation

@ Resulting DAE is much smaller, but usually much denser
@ Sometimes the resulting density is crippling for optimization
@ Should thus also consider sparsity when tearing

@ As far as | know, this is previously unexplored/unpublished
territory for dynamic systems (even for simulation)

@ Nice ideas from dynamic pivot selection in direct methods for
sparse matrices (Markowitz criterion and local minimum fill-in)
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A real example

A real BLT form where tearing is important

I SRR

Do not be fooled by the green
landscape! Nonlinearities in the
state variables.
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Old Results

Results from 1 year ago without tearing and sparsity preservation

Problem Ny ny,  Time [s]
S Ceced 13 4 20
CCPP oo 10 1 08
Dist. Col. ;:Lljuced 122 10200 513&21

All of these problems lack algebraic loops = no use for tearing. But
maybe sparsity preservation helps!
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New results

Some new problems to demonstrate effects of tearing

Problem Ny ny,  Time [s]
OB 0O piies 125 263 044
Fourbart ;Léltljuced 2 44562 327
HRSG ;L;lcl'.iuced 1 g :i 22
bbl. Pend. ;l;ltljuced j 154 g?)
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Conclusion

Elimination techniques for dynamic optimization:

@ Eliminate algebraic variables by identifying BLT structure and tear
non-scalar blocks

@ Keep some choice algebraic variables to preserve sparsity

@ Employing these techniques reduces solution time by a factor
between 2 and co

@ | have yet to encounter a problem where a suitable combination
of these ideas do more harm than good

@ No other dynamic optimization software utilizes these techniques
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Thank you for listening!

The End
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