Symbolic Elimination Techniques for Dynamic Optimization

Fredrik Magnusson

Department of Automatic Control Faculty of Engineering Lund University, Sweden

April 1, 2016

Outline

Outline

- Started February 2012
- Working on JModelica.org: Open-source framework for large-scale dynamic optimization
- Looking for ways to make dynamic optimization algorithms more
 - efficient
 - reliable
 - accessible

- Optimization problems with differential equations as constraints
- Applications include
 - optimal control (open or closed loop)
 - parameter estimation or optimization
 - state estimation (moving horizon estimation)
 - experiment design

JModelica.org

Optimal control

minimize

with respect to subject to

$$\phi(t_f, x(t_f)) + \int_0^{t_f} L(x(t), u(t)) \,\mathrm{d}t,$$

$$\begin{split} t_f, x, u, \\ \dot{x} &= f(x(t), u(t)), \\ x(0) &= x_0, \\ g_i(t, x(t), u(t)) &\leq 0, \\ \psi(x(t_f)) &= 0, \\ \forall t \in [0, t_f]. \end{split}$$

Differential-algebraic equation (DAE) instead of explicit ODE:

$$\begin{array}{ll} \text{minimize} & \phi(t_f, x(t_f), y(t_f)) + \int_0^{t_f} L(x(t), y(t), u(t)) \, \mathrm{d}t, \\ \text{with respect to} & t_f, x, y, u, \\ \text{subject to} & F(\dot{x}(t), x(t), y(t), u(t))) = 0, \\ & x(0) = x_0, \\ & g_i(t, x(t), y(t), u(t)) \leq 0, \\ & \psi(x(t_f), y(t_f)) = 0, \\ & \forall t \in [0, t_f]. \end{array}$$

- DAE systems can be simulated with specialized DAE solvers
- Common to instead transform (reduce) the DAE to an ODE and apply ODE solvers
- These transformations have many benefits, but a few drawbacks

Example

DAE ODE

$$U_{0} = \sin(t) \qquad \frac{d}{dt}i_{L} = \frac{\sin(t)}{L}$$

$$u_{1} = R_{1} \cdot i_{1} \qquad \frac{d}{dt}i_{L} = \frac{\sin(t)}{L}$$

$$u_{2} = R_{2} \cdot i_{2}$$

$$u_{3} = R_{3} \cdot i_{3}$$

$$u_{L} = L \cdot \frac{d}{dt}i_{L}$$

$$U_{0} = u_{1} + u_{3}$$

$$u_{L} = u_{1} + u_{2}$$

$$u_{3} = u_{2}$$

$$i_{0} = i_{1} + i_{L}$$

$$i_{1} = i_{2} + i_{3}$$
ODE
ODE

Going from DAE to ODE in general involves many steps:

Get rid of equations and corresponding variables of the form $x \pm y = 0$
Perform index reduction until DAE is
index 1 (dummy derivatives)
Match variables and equations (Hopcroft-Karp)
Transform the system to block-lower triangular
(BLT) form with blocks of minimal size (Tarjan)
Tear algebraic loops
Solve algebraic loops (Newton or LU)

Steps 1 and 5 are optional and done for performance.

BLT example

The block-lower triangular (BLT) transformation is central. Example:

- Allows state derivatives x and algebraic variables y to be solved for sequentially (in terms of state x and input u), resulting in ODE
- Non-scalar and/or nonlinear blocks require numerical treatment

- DAE-constrained optimization traditionally done using full DAE
- Research idea: Utilize some of the transformation techniques for DAE simulation for optimization
- For simulation, goal is to get equivalent ODE
- My goal is instead to get the equivalent (reduced) DAE that is most suitable for numerical optimization

- 1. Alias elimination
- 2. Index reduction
- Matching
 BLT
- 5. Tearing 6. Solve loops
- 7. Sparsity preservation

Get rid of equations and corresponding variables of the form $x \pm y = 0$ Perform index reduction until DAF is index 1 (dummy derivatives) Match variables and equations (Hopcroft-Karp) Transform the system to block-lower triangular (BLT) form with blocks of minimal size (Tarjan) Tear algebraic loops Solve algebraic loops (Newton or LU) Undo some parts of steps 4 and 5 to preserve sparsity

Outline

- Used to improve efficiency when solving $\bar{A}x = b$ when \bar{A} is sparse but without significant structure
- Permute \bar{A} to get

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

such that A is easy to invert and D is small

Solution is then

$$x_{2} = \left(D - CA^{-1}B\right)^{-1} \left(b_{2} - CA^{-1}b_{1}\right)$$
$$x_{1} = A^{-1} \left(b_{1} - B\left(D - CA^{-1}B\right)^{-1} \left(b_{2} - CA^{-1}b_{1}\right)\right)$$

• $D - CA^{-1}B$ is the Schur complement of block A

Linear tearing in BLT

- In the BLT form, we use linear tearing for linear, non-scalar blocks
- Make A lower triangular (invert by forward substitution)
- Terminology:

Causalized variables $x_1 \in \mathbb{R}^{n_c}$

Tearing variables $x_2 \in \mathbb{R}^{n_t}$

Causalized equations $Ax_1 + Bx_2 = b_1 \in \mathbb{R}^{n_c}$

Tearing residuals $Cx_1 + Dx_2 = b_2 \in \mathbb{R}^{n_t}$

- Inverting \bar{A} has cost $\mathcal{O}((n_c+n_t)^3)$
- Using Schur complement when A is lower triangular, cost is instead $\mathcal{O}(n_c^2 n_t + n_c n_t^2 + n_t^3)$
- $\bullet~{\rm Got}~{\rm rid}~{\rm of}~{\mathcal O}(n_c^3) \Longrightarrow$ we want few tearing variables

Tearing example

BLT with tearing

0 0 C 2 C 2

der(iL)

⊣

- Finding a minimal set of tearing variables and residuals such that *A* is lower triangular is NP-hard
- However, some choices of tearing variables/residuals will cause ill-conditioned Schur complement!
- So even if it were tractable to minimize n_t , would often be bad
- Selection either by heuristic algorithms, or manually by experts
- The automatic tearing in Dymola is a trade secret and one of the major reasons of its success

Nonlinear tearing

- For nonlinear systems F(x) = 0, the main idea is the same
- Tear to create partition

where F_1 is lower triangular and constant along diagonal

• F_1 nonlinear w.r.t. x_1 , but easy to invert by forward substitution Fredrik Magnusson: Symbolic Elimination Techniques for Dynamic Optimization

- When transforming all the way to an ODE, we need to numerically solve the tearing residuals
 - LU decomposition for linear blocks, Newton for nonlinear blocks
- The resulting ODE is thus not on closed form, and takes a long time to evaluate the right-hand side of
- Simply leave the tearing residuals, yielding a smaller DAE with cheap residuals
- Consequently no point in solving for the state derivatives always choose all state derivatives as tearing variables

- Resulting DAE is much smaller, but usually much denser
- Sometimes the resulting density is crippling for optimization
- Should thus also consider sparsity when tearing
- As far as I know, this is previously unexplored/unpublished territory for dynamic systems (even for simulation)
- Nice ideas from dynamic pivot selection in direct methods for sparse matrices (Markowitz criterion and local minimum fill-in)

A real BLT form where tearing is important

Outline

Old Results

Results from 1 year ago without tearing and sparsity preservation

Problem		n_x	n_y	Time [s]
ST-WF	Full	13	27	3.7
	Reduced	13	4	2.0
CCPP	Full	10	123	2.3
	Reduced	10	1	0.9
Dist. Col.	Full	125	1000	12
	Reduced	125	2	94

All of these problems lack algebraic loops \implies no use for tearing. But maybe sparsity preservation helps!

Some new problems to demonstrate effects of tearing

Problem		n_x	n_y	Time [s]
Dist. Col.	Full	125	1000	12
	Reduced	125	2 63	94 4
Fourbar1	Full	2	452	37
	Reduced	2	46	2
HRSG	Full	18	75	8.4
	Reduced	18	14	3.6
Dbl. Pend.	Full	4	124	∞
	Reduced	4	7	3.0

Elimination techniques for dynamic optimization:

- Eliminate algebraic variables by identifying BLT structure and tear non-scalar blocks
- Keep some choice algebraic variables to preserve sparsity
- $\bullet\,$ Employing these techniques reduces solution time by a factor between 2 and $\infty\,$
- I have yet to encounter a problem where a suitable combination of these ideas do more harm than good
- No other dynamic optimization software utilizes these techniques

The end

Thank you for listening!

The End