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JModelica.org
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Dynamic optimization

Dynamic optimization problems involve

a dynamic system

a continuous-time model of the system dynamics

constraints enforcing the model equations

a time horizon, which may be infinite or finite, free or fixed

Applications include

optimal control, either open-loop or e.g. model predictive control

grey-box identification

state estimation (typically moving horizon estimation)
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In our course in Nonlinear Control, we study optimal control problems

of the form

minimize φ(tf ,x(tf ))+

∫ tf

0

L(x(t),u(t))dt,

with respect to tf ,x,u,

subject to ẋ= f(x(t),u(t)),

x(0) = x0,

ge(t,u(t)) = 0,

gi(t,u(t)) ≤ 0,

ψ(x(tf )) = 0,

∀t ∈ [0, tf ].

My work treats various generalizations of the above problem, most

notably handling differential-algebraic equation systems instead of

ordinary differential equations and state constraints.
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Pontryagin’s maximum principle

Using Pontryagin’s maximum principle, this results in a boundary

value problem.

Not feasible to solve analytically in many practical applications

One possible approach is to solve the boundary value problem

numerically. This is called an indirect approach, and was the

state of the art until the 1970s.

Two major weaknesses

the switching structure of the inequality constraints can be difficult

to find

sensitive to initial guesses of adjoint states
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Direct approach

Another approach is to discretize the problem before establishing

optimality conditions.

Results in a mathematical program

Optimality conditions given by the Karush–Kuhn–Tucker (KKT)

conditions

This is called a direct approach, and is most commonly used

today.

Two major categories of direct approaches: collocation and

multiple shooting
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Collocation methods

Main idea is to approximate system trajectories by polynomials:

Divide the time horizon [t0, tf ] into a finite number of elements

Approximate the time-variant variables in each element by a

polynomial

Force this polynomial to satisfy all the constraints in nc points

This uniquely determines a polynomial of degree nc − 1 by

interpolation
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Nonlinear program

The result is a nonlinear program on the form

minimize f(x),

with respect to x ∈ R
n,

subject to xL ≤ x≤ xU ,

g(x) = 0,

h(x) ≤ 0.

NLP solution approximates the solution to the original dynamic

optimization problem.

JModelica.org uses IPOPT to solve NLPs.
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Convex programming

In our course in Convex Optimization, we study numerical solution of

convex programs of the form

minimize f(x),

with respect to x ∈ R
n,

subject to Ax= b,

h(x) ≤ 0,

where f and h are convex. The problem is solved using the barrier

method and using Newton’s method for the inner iterations.
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KKT system

The main step of Newton’s method is solving the KKT system

(linearization of modified KKT conditions)

[

t∇2f(x)+ ∇2φ(x) AT

A 0

][

∆x
∆ν

]

= −

[

t∇f(x)+ ∇φ(x)
0

]

,

where t is the (inverse) barrier parameter, φ is the barrier term, ∆x is

the primal step and ∆ν is (or rather, would be) the dual step.
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Problem scaling

The scaling/conditioning of the problem becomes crucial for the

performance of the method (especially for large-scale problems). John

Betts gives the following “hints” for achieving well-scaledness of an

NLP:

normalize the decision variables to have unitary magnitude

normalize the constraint residuals and objective to have unitary

magnitude

normalize the rows and columns of the Jacobian to have unitary

magnitude

normalize the constraint residuals so that the dual variables have

unitary magnitude

somehow achieve unitary condition number of projected Hessian

somehow achieve unitary condition number of the KKT matrix
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KKT condition number as a performance

measure

Ideas for automating residual scaling and improving constraint

Jacobian scaling

How to evaluate these ideas? Execution time and number of

iterations unreliable!

Idea: use KKT condition number as a performance measure

14 / 22



Condition number

Condition number κ of matrix A defined as

κ(A) :=
σmax(A)

σmin(A)

Interesting when solving linear systems Ax= b, since e.g.

||δx||

||x||
≤ κ(A)

||δb||

||b||
.
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CSTR case study

Extract the different parts of the KKT matrix for each iteration in

IPOPT.

A simple case study of how the KKT condition number varies in

each iteration during the solution of a simple optimal control

problem

Temperature control of a two-state continuous stirred-tank reactor

(CSTR) (small but highly nonlinear)

16 / 22



KKT condition number for CSTR

0 5 10 15 20 25 30 35 40 45
10

5

10
10

10
15

10
20

10
25

10
30

iter

 

 

KKT Condition

17 / 22



IPOPT KKT matrix

IPOPT first transforms the NLP to the form

minimize f(x),

subject to xL ≤ x≤ xU ,

g(x) = 0,

and then works with the KKT system
[

W + Σ+ δW I ∇gT (x)
∇g(x) −δgI

][

∆x
∆ν

]

= −

[

∇f(x)+µ∇φ(x)+ ∇gTν

g(x)

]

,

where W is the Hessian of the Lagrangian, δW and δg are

regularization parameters and Σ is a diagonal matrix defined by

Σi,i :=
zL

i

xi −xL
i

+
zU

i

xU
i −xi

,

where zL and zU are dual variables for the lower and upper bounds on

x, respectively.
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Benign ill-conditioning

The inherent ill-conditioning of interior-point methods has been

known for a long time

But it was not understood until the late 90s

The ill-conditioning is in large part caused by Σ (and µ)

So, how to measure the effects of problem scaling if the condition

number of the KKT matrix is insignificant? Two unfounded ideas:

1 Condition number of KKT matrix without the Σ term

2 ||K\K1− 1||RMSǫ
−1

mach
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KKT condition number for CSTR revisited
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Conclusions

Problem conditioning is important (although I have not really

demonstrated that), and only partly automated

Problem conditioning is hard

Evaluating various methods for improving problem conditioning

was a lot more difficult than I had initially hoped for. Hopefully to

be continued...
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The end

Thank you for listening!

The End
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