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Dynamic optimization

Dynamic optimization problems involve
@ adynamic system
@ a continuous-time model of the system dynamics
@ constraints enforcing the model equations

@ atime horizon, which may be infinite or finite, free or fixed

Applications include
@ optimal control, either open-loop or e.g. model predictive control
@ grey-box identification

@ state estimation (typically moving horizon estimation)
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In our course in Nonlinear Control, we study optimal control problems
of the form

ty
minimize d(tpx(ty))+ | L(z(t),u(t))dt,
0
with respectto ¢y, x,u,
subject to = f(z(t),ut)),
x(0) = xo,

ge(t,u(t)) =0,
9i(t,u(t)) <0,
Y(z(ty)) =0,
Vt e [O,tf].

My work treats various generalizations of the above problem, most
notably handling differential-algebraic equation systems instead of
ordinary differential equations and state constraints.
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Pontryagin’s maximum principle

@ Using Pontryagin’s maximum principle, this results in a boundary
value problem.

@ Not feasible to solve analytically in many practical applications

@ One possible approach is to solve the boundary value problem
numerically. This is called an indirect approach, and was the
state of the art until the 1970s.

@ Two major weaknesses

@ the switching structure of the inequality constraints can be difficult
to find

@ sensitive to initial guesses of adjoint states
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Direct approach

Another approach is to discretize the problem before establishing
optimality conditions.

o

o

Results in a mathematical program

Optimality conditions given by the Karush—Kuhn—Tucker (KKT)
conditions

This is called a direct approach, and is most commonly used
today.

Two major categories of direct approaches: collocation and
multiple shooting
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Collocation methods

Main idea is to approximate system trajectories by polynomials:
@ Divide the time horizon [tg, | into a finite number of elements

@ Approximate the time-variant variables in each element by a
polynomial

@ Force this polynomial to satisfy all the constraints in n. points

@ This uniquely determines a polynomial of degree n.— 1 by
interpolation
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Nonlinear program

@ The result is a nonlinear program on the form

minimize f(z),

with respectto = € R",

subject to rr <x<ay,
g9(z) =0,
h(z) <0.

@ NLP solution approximates the solution to the original dynamic
optimization problem.

@ JModelica.org uses IPOPT to solve NLPs.
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Convex programming

In our course in Convex Optimization, we study numerical solution of
convex programs of the form

minimize f(x),

with respect to x € R",

subject to Az =0,
h(z) <0,

where f and h are convex. The problem is solved using the barrier
method and using Newton’s method for the inner iterations.
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KKT system

The main step of Newton’s method is solving the KKT system
(linearization of modified KKT conditions)

tV2f () + V3¢(x) AT] [Aﬂ _ ltv f(ac)—l—V(;S(a;)]
A 0| |Av 0 ’

where t is the (inverse) barrier parameter, ¢ is the barrier term, Ax is
the primal step and Av is (or rather, would be) the dual step.
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Problem scaling

The scaling/conditioning of the problem becomes crucial for the
performance of the method (especially for large-scale problems). John
Betts gives the following “hints” for achieving well-scaledness of an
NLP:

@ normalize the decision variables to have unitary magnitude

@ normalize the constraint residuals and objective to have unitary
magnitude

@ normalize the rows and columns of the Jacobian to have unitary
magnitude

@ normalize the constraint residuals so that the dual variables have
unitary magnitude

@ somehow achieve unitary condition number of projected Hessian

@ somehow achieve unitary condition number of the KKT matrix
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KKT condition number as a performance
measure

@ Ideas for automating residual scaling and improving constraint
Jacobian scaling

@ How to evaluate these ideas? Execution time and number of
iterations unreliable!

@ I|dea: use KKT condition number as a performance measure
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Condition number

@ Condition number x of matrix A defined as

L Umax(A)
Kk(A) := —Y

@ Interesting when solving linear systems Az = b, since e.g.

[|0z]]

||

db
< E(A)H.
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CSTR case study

@ Extract the different parts of the KKT matrix for each iteration in
IPOPT.

@ A simple case study of how the KKT condition number varies in
each iteration during the solution of a simple optimal control
problem

@ Temperature control of a two-state continuous stirred-tank reactor
(CSTR) (small but highly nonlinear)
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IPOPT KKT matrix

IPOPT first transforms the NLP to the form

minimize  f(z),

subject to h<az< a:U,

g(x) =0,
and then works with the KKT system
W+ S+ 6wl ng(x)l lm] _ lv F(@)+puVe(x)+VgTv
Vg(x) —641 | |Av g(x) ’

where W is the Hessian of the Lagrangian, oy and d, are

regularization parameters and X is a diagonal matrix defined by

2k 2V

-—— ? 1
Zi,i — 17 + U ’

where z% and 2z are dual variables for the lower and upper bounds on
x, respectively.
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Benign ill-conditioning

@ The inherent ill-conditioning of interior-point methods has been
known for a long time

@ But it was not understood until the late 90s
@ The ill-conditioning is in large part caused by 3 (and 1)

So, how to measure the effects of problem scaling if the condition
number of the KKT matrix is insignificant? Two unfounded ideas:

@ Condition number of KKT matrix without the ¥ term
Q ||[K\K1—1||rms€macn
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KKT condition number for CSTR revisited
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Conclusions

@ Problem conditioning is important (although | have not really
demonstrated that), and only partly automated

@ Problem conditioning is hard

@ Evaluating various methods for improving problem conditioning
was a lot more difficult than | had initially hoped for. Hopefully to
be continued...
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The end

Thank you for listening!

The End
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