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1. Background & Motivation

Challenge

How to design tracking control systems with satisfactory
performance without exact model knowledge?

e Rapid response
 Stability/robustness/safety guarantee
e Optimality for reduced fuel consumption

Aeronautics Power systems Transportation




1. Background & Motivation

Optimal Control--The Linear Quadratic Regulator (LQR)
if full system dynamics are available.
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General goal

We want to find optimal control solutions
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a) Online in real-time

b) Using adaptive control techniques

¢) Without knowing the full dynamics

On-line real-time

control loop

Off-line
design Loop

Reinforcement learning (RL)
turns out to be
the key to this goal!



1. Background & Motivation

How to achieve Optimal Output Tracking for DT systems via

Output-Feedback-based Reinforcement learning?
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2. Problem Formulation (From Tracking to Regulation)

System to be controlled Reference Tracking error
x(k+1) = Ax(k) + Bu(k k+1)=Sx,4(k
(er D) =Ax+ Butlo  xaler D =35xal0) 1)) = y(i) - ya(h)
y(k) =Cx(k) " "  ya(k) = Rxq(k)

Ty X Ty

Control design by the standard output regulation (full system dynamics)

Augmented system
e(k+1) = Ae(k) + Bu,(k)
{ Yery = Ce(k)
u(k) = —Kx(k) — Hz (k) u,(k) = —Ke(k) with K = [K, H]

Standard controller

z(k + 1) = Fz(k) — Gy, (k)

Problem: Feedback gains to be designed

(1_4, C ) may not be detectable (observable).

A fundamental problem of
detectability (observability) is resulted
for output-feedback-based design.




2. Problem Formulation (From Tracking to Regulation)

System to be controlled Reference Tracking error
x(k+1) =Ax(k) + Bu(k xqg(k+1) =58x4(k
(er D) =Ax+ Butlo  xaler D =35xal0) 1)) = y(i) - ya(h)
y(k) =Cx(k) " "  ya(k) = Rxq(k)

Ty X Ty

To ensure the detectability (observability), we design

Our controller Augmented system

z(k + 1) = Fz(k) — Gy, (k)

e(k+1) = Ae(k) + Bu,(k)
Yek) = Ce(k)

u(k) = —Kx(k) — Hz(k) — Tz(kg_&\ u,(k) = —Ke(k) with K = [K, H]
Our Solution: New feedforward gain 7%
1. Given (F,T') detectable (observable) and r, > 7, \

then (1_4, C ) is detectable (observable).

2. Given any matrix 7,

then (1_4,5 ) is stabilizable (controllable).




2. Problem Formulation

A tracking control design problem is now transformed
into a regulation-based optimization problem.

Problem

Augmented system f

(0.0]

(%) Jelk+ D) =Ae() + Bue(k) | [min ) (yI(D)Qye(® +ul(DRuo(D)

A

ye(k) = Ce(k) i=k
\

subject to (*)

Question: How to use i/o data to learn the optimal
controller that solves the optimization problem

without exact model knowledge?
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3. Method (State-Feedback Case)

Design the behavior policy u(k) = —K°r(k) + &(k) — Tz(k)
Z(k+1)= Fz(k) — Gy(k) + GI(k)

Policy-iteration-based Bellman equation solver in state-feedback form

rf(k+ )Pk +1) — T (B) P r(k)

= —r"(k)(Q + (K))"RK7)r(k) + 97 (k)GT PPH1GY(k)
+ (—KIr(k) + a(k))T BT PP B(Kir(k) + u(k))
+ 20" (k)G PP Bu(k) + 2rT (k) AT PITIGY(k)
+ 2T (k) AT PITYB(KIr(k) + u(k)).

r=[xT,z1]"

unknown

We seek to reconstruct the state using input and output data.
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3. Method (System State Reconstruction)

Reconstruct the state using input and output data.

Calk+1) = (I, ® A¢)Ca(k) + u(k) ® b,

Cylk+1) = (I, ® Ac)Gy(k) +y(k) @b, ¢ =16, ¢ 1"
Go(k+1) = (Ip ® A¢)Co (k) +I(k) @b,
where b = [0,0,...,0,1]"" and A; is a companion matrix'

1. G. Tao, Adaptive control design and analysis. John Wiley & Sons, 2003

Theorem 1: If the matrix pair (A, B) is controllable and
(A, C) is observable, then the system state satisfies

r = M( + (A — LC)r(0)

where|M is a full row rank matrix|and ¢ is a known vector. The
re-expression error  — M converges to zero asymptotically.
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3. Method (System State Reconstruction)

Theorem 1: If the matrix pair (A, B) is controllable and
(A, C) is observable, then the system state satisfies

r = MC + (A — LC)*r(0)

where M J$ a full row rank matrix and C is ,4 known vector. The
re-expregsion error 7 — M ( converges td zero asymptotically.

/ /
/ /
/ /
Policy,iteration-based Bellman equatiod solver in state-feedback form
4 4

rf(k+ )Pk +1) — D (B)P T r(k)

+ 207 (k)GT PP Bu(k) + 20T (k) AT PITI GO T = X7, 2
—I—ZTT(k)ATPjJrlB(RjT(k) —I—’E',(k)) unknown
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3. Method (Output-Feedback Case)

Solve the optimal control gain through output feedback

vecs(M TP M) ]
Solve | vec(M' A" P""'B)
vecs(B' P’*'B)
vec(M 4" P77'G)
vec(G' P'*'B)
vecs(G' P7'G)

J

QO = V; + D—j+1 7

=

Collect the input-output data over [k, k1], i=0,....f

C. =[veev(r(k,)) — veev(r(k,)), -, veev(r(k, ) - veev(r(k, )"
D, =[veev(K'r(k,)), veev(K'r(k,)), -, veev(K ' r(k, )T’

D, =[vecv(#@(k,)), vecv(i(k,)), -, veev(@(k, )"

D, =[vecv(r(k,)), veev(r(k,)), -, veev(r(k, )I

D, =[vecv(9(k, ), veev(9(k,)), -, veecv(9(k, )T’
Dy, =[3ky) ®r(ky), (k) ®r(k,), -, 9k, ) &r(k, )

D, =[r(ky) ®r(ky),r(k)®r(k), -, r(k, )& r(k,, )]’

Data collection Data collection

A / starts / ends

>
g A J
Y Y
Data Collection Optimal
Control
Phase
Phase

Fig. 1 data processing for off-

policy learning
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3. Method (Learning From Input-Output Data)
Solve the optimal control gain through output feedback

Solve

J

Q

vecs(M TP M)
vec(M" A" P’"'B)
vecs(B' P’'B)
vec(M 4" P77'G)
vec(G' P'*'B)
vecs(G' P7'G)

— v/
_VO + D—j+1 4

Verifiable criterion for checking how much data.

Data collection Data collection

A / starts / ends

rank([Dg—, Dﬁg—, D_,D

u>o 9479

+ n:r, + I"pl’l— + I"pl"m

4 4

Dyg> Dy 1)

:%(ng_(ng— +D+r,(r, +D)+r,(r, +1)

>
g A J
Y Y
Data Collection Optimal
Control
Phase
Phase

Fig. 2 The proposed data processing for

off-policy learning

The optimal control gain (R + ETPj+1l§)_1(1\7IT4TPj+1l§)T
is uniquely learned from input-output data.
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4. Simulation

F-16 aircraft dynamics after the discretization

x(1) angle attack; x(3) elevator actuator;

[ 0.887086 —0.00423047 —0.00281863 . .
A= 0282727 0999573 —0.00043168 | , *(2) pitchrate; y = x(2) pitchrate.
0.0284386  2.93148 0.994194
- The initial stabilizing control gain as
1.77695 )
B=|0212081 |, C= 0572058 0] K) =1 16.0669 20.11 20.3783
| 2.82003 20.8936  3.93085 7.08518
Reference dynamics 19.9149 10.5774 4.29378
. 0 1 B—l1 0 —0.31044 —8.03354  —18.0887
=121 o B=l ] —~12.2209  —2.57785  —0.414603 |
10" — T 27
- .. oLy, —Ly| |
5 T - el . KK The learned optimal control gain as
° N K= -314906 —1.06988  0.068666
P A S Y .4.,.3 —0.161422  2.73117  —1.38856
10 ¥ - —2.63657  1.70597 1.54444
5 1 0.842932 1.57443 2.10917
10 : i o ~1.08647  —2.09949 —0.47113]
10 10
Iteration Steps
16

(b) L5 = Lip|| and || K3 — K|
Fig. 3 Convergence of the learned control gain



Output trajectories
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Output tracking error

4. Simulation
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Data collection

/ starts

50 100 150 200 250
Step(k)

(a) Output performance y(k), ya(k)

Data collection

/ ends

" FEError y(k) — ya(k)] i

>

Data Collection
Phase

Performance
Improved

(b) Tracking error y(k) — ya(k)

Fig. 4 Output trajectories over the time
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5. Conclusion

Adaptive Optimal Output Tracking for DT systems via

Output-Feedback-Based Reinforcement Learning

1. We proposed an output regulation and off-policy
RL-based controller to formulate adaptive optimal
output tracking problem for DT systems.

2. We derived a verifiable rank condition to ensure
the uniqueness of the optimal control gain learned
from input-output data.

3. We proposed a model-free pre-collection phase to
supplement the off-policy learning for DT systems.
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