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Problem Statement

» Route packets through a real-time network
» Give guarantees on total transmission delay

» Use reinforcement learning(RL) to explore the state-space
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» Route packets through a real-time network
» Give guarantees on total transmission delay

» Use reinforcement learning (RL) to explore the state-space

Try the algorithm yourself

https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL
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Motivation

» Typical transmission time over link varies over time
» Classical RL based solutions

® Reduce total transmission times

® Do not provide guarantees
» Real-time solution!]

® Provide Guarantees

® Depends on complex routing tables

® Does not react to disturbances

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018
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Previous work [1]

715 Edgeé ) Dp

....................................

s Drawbacks

' ® Huge tables for large number of nodes and edges

® Recalculate table for every change
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[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018
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Reinforcement Learning

» Branch of machine learning that is unsupervised

» Agent teaches itself how to behave by trial and error in
episodic manner

» Learns to maximise a reward returned by the environment

Stote & Reward
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Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

® Finite set of states (S)
® Finite set of actions from each state (A)

® Probability of transition from one state to another (P)

® Rewards from each state (R)

» In our state space, we encode the current vertex and total
time elapsed from the beginning



State-Space Example

» Consider a scenario with :-
® Source node i, destination node t

® Maximum admissible time, Dy = 25

15
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Unsafe States
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Dijkstras shortest path

» Versatile algorithm to find shortest path from starting to target node
in a weighted graph
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Dijkstras shortest path

» Versatile algorithm to find shortest path from starting to target node
in a weighted graph

» Forms the basis of pre-processing stage

» Gives the tightest deadline Dy that can be guaranteed over each link
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Dijkstras shortest path
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Dijkstras shortest path

' Calculate shortest path from next
node to destination




Dijkstras shortest path

Reduced computation when run
from destination to source
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Pre-processing phase

» Required irrespective of the algorithm used to provide
guarantees

» Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

» Calculated for each link in the network
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» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions

Thanks to the truncated state-space
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Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions
» Algorithm has two phases

® Pre-processing phase (Dijkstras algorithm)

® Run-time phase

» The environment returns the reward after each episode
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Routing with safe reinforcement learning

» Value iteration updates a value of being in a state,

improving future episodes
» Popular Methods
® Monte Carlo value estimation

® Temporal Difference(TD) Learning

» Exploration using e-greedy approach

® Taking only safe edges ensures safe learning



Value Update

» Monte-Carlo Methods



Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce



Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce

» Temporal Difference(TD) Learning

® | earning without waiting for episode to end



Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce

» Temporal Difference(TD) Learning
® | earning without waiting for episode to end

® Special case TD(0) depends only on the value of current and next
state-action pairs

® O(s,a) = Q(s,a) + a- (R+ max(y Q(s',a’)) — Q(s, a))



Exploration

» c-greedy exploration gives stochastic convergence
guarantees

» Ensures that all feasible paths in the network will
eventually be explored



Run-time phase

» Run at every node when a packet arrives



Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values

® TD-Learning removes reward back propagation



Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions



Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do

if u = source node ¢ then
D, = Dp // Initialise the deadline for each episode
d;t = 0 // Initiliaze total delay for packet = 0

for each edge (u — v) do
if ¢y, > D, then // Unsafe Edge
P(ulv) =0
else if Q(u,v) = maz(Q(u,a € A)) then
P(ulv) = (1 —¢)
else
P(ulv) = €/(size(F — 1))
Choose edge (u — v) with P
Observe 0.,
61'15 += 5uv
D, =D, — 5uv
R = Environment Reward Function(v, d;;)
Q(u,v) = Value iteration from Equation
if v =1 then
DONE

e e T T e T e T e T = S = G S Gy S




Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do

2: if u = source node ¢ then

D, = Dp // Initialise the deadline for each episode
d;+ = 0 // Initiliaze total delay for packet = 0

———————————

_derCach edge (u — v) do -~
if ¢y, > D, then // Unsafe Edge
P(ufv) =0
else if Q(u,v) = maz(Q(u,a € A)) then
Pufv) = (1 —¢)

else

13: Observe 5% N
14: 0it += Ouw
15: D,=D, — 5uv

16: R = Environment Reward Function(v, d;;)
17: Q(u,v) = Value iteration from Equation
18: if v =1 then

19: DONE




Reward Function

» Reward assigned by the environment
» At the end of every episode/packet transmission

» Propagates to other nodes through TD(0)

Algorithm 1 Environment Reward Function(v, d;;)

1: Assigns the reward at the end of transmission
2: 1if v = ¢ then

3: R=Dp — (5“

4: else

5 R=0
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 Episode | Path | TransmissionTime
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2 li, X, 1] 14
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An Example. D, =25

1 [i, t]
2 [i, X, 1]
15,30
\
110,20

Current Best Path

110,20 10,10




An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12
2 li, X, 1] 14

15,30

15,15




An Example. Dy, = 25
 Episode | Path | TransmissionTime

1,15,15

1,10,20 1,10,10

12,25,25



An Example. Dy, = 25
 Episode | Path | TransmissionTime

1,15,15

1,10,20 1,10,10

12,25,25



An Example. Dy, = 25
 Episode | Path | TransmissionTime

— 1,15,15
1,10,20 10,10,10

12,25,25



An Example. D, =25
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An Example. D, =25

 Episode | Path | TransmissionTime

1

2
3
4

,10,20

[i, 1]
[i, X, t]
[i’ X’ y’ t]
[i’ X’ y’ t]
, 15,30

\

10,20

10,10 10,10

2525

12
14
10
10

Choose best path with
higher probability for
future transmissions

15,15




Fvaluation

» Implemented using NetworkXI"
» Python graph generator package

» Compare our algorithm to Rapid Routingl? and classical RL

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”

[2] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018


http://conference.scipy.org/proceedings/SciPy2008/paper_2/
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Experiment 1: No Variance

» No Variance in the typical transmission times

» Paths taken by both Rapid Routing and Safe RL converge to the
same

» Average delays are slightly higher for Safe RL due to exploration

Table 1: Optimal Path for Different Deadlines
Dr Optimal Path Delays, Rapid Routing Average Delays (1000 episodes)

15 Infeasible - -

20 fix,t) 14 14
25 {ixyt) 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64

40 {i,x,z,t} 6 6.55




Experiment 1: No Variance. 6 = ¢/,
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Experiment 1: No Variance. 6 =

x Classical RL * Rapid Routing O Safe RL

Transmission Time
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Experiment 1: No Variance. 6 =c¢

x Classical RL x Rapid Routing O Safe RL
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Experiment 1: No Variance. 6 =c¢

x Classical RL x Rapid Routing O Safe RL
Deadline Dg

Safe RL converges to RR path after
enough episodes
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Experiment 1: No Variance. 6 =

Transmission Time
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Experiment 2: Congestion on link

» Tests the adaptability of our algorithm

» Simulate congestion of network

» At episode 40, ¢! = 10 instead of ¢/ = 4
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Experiment 2: Congestion on link.
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Experiment 2: Congestion on link
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Experiment 2: Congestion on link
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Deadline Dg

[i,x,t], results in higher tx times
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Experiment 2: Congestion on link
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Experiment 3b: Uniform Distribution
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Experiment 4: WC-Uniform Distribution. 0 <8 < ¢
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Experiment 5: Computational time
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Experiment 5: Computational time
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» Rapid Routing needs to be rerun when typical tx time changes
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Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees
» Rapid Routing needs to be rerun when typical tx time changes

» Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation
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Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees
» Rapid Routing needs to be rerun when typical tx time changes

» Most complexity of safe RL comes from pre-processing stage. Run only once
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Conclusion

» Applied reinforcement learning to routing over real-time networks
» Augmented state-space allows safe exploration
» Constant adaptation to changes in typical transmission time

» Compared to classical RL, our algorithm is robust and does not
violate any deadlines

» Compared to previous work, our algorithm
e Adapts online to changes in typical transmission time

® |s |ess computationally intensive
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Future Work

» Implement on a network emulator
® Thank you Alex for pointers.
» Investigate probability propagation through network

» Is there anyway to guarantee safety it loops are present in
the network?
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