Adaptive Routing with Guaranteed
Delay Bounds using Safe
Reinforcement Learning

Gautham Nayak Seetanadi

Martina Maggio, Karl-Erik Arzen

Dept. of Automatic Control, Lund University

Problem Statement

» Route packets through a real-time network
» Give guarantees on total transmission delay

» Use reinforcement learning(RL) to explore the state-space

Problem Statement

- i - I
| DAG with worst case link dela

y |

— e = — _

» Route packets through a ressaesenetwork
» Give guarantees on total transmission delay

» Use reinforcement learning(RL) to explore the state-space

Problem Statement

y |

» Route packetgt
» Give guarantees on total transmission delay

» Use reinforcement learning(RL) to explore the state-space

Problem Statement

y |

» Route packetgt
» Give guarantees on total transmission delay

» Use reinforcement learning(RL) to explore the state-space

tables

|
L——g———* — = — =

Problem Statement

» Route packets through a real-time network
» Give guarantees on total transmission delay

» Use reinforcement learning (RL) to explore the state-space

Try the algorithm yourself

https://github.com/AdaptiveRouting-using-RL/AdaptiveRoutingUsingRL

Motivation

» Typical transmission time over link varies over time

Motivation

» Typical transmission time over link varies over time

» Classical RL based solutions

Motivation

» Typical transmission time over link varies over time
» Classical RL based solutions
® Reduce total transmission times

® Do not provide guarantees

Motivation

» Typical transmission time over link varies over time
» Classical RL based solutions

® Reduce total transmission times

® Do not provide guarantees

» Real-time solution (1]

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Motivation

» Typical transmission time over link varies over time
» Classical RL based solutions

® Reduce total transmission times

® Do not provide guarantees
» Real-time solution!]

® Provide Guarantees

® Depends on complex routing tables

® Does not react to disturbances

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Example Network Overview

®
®

Example Network Overview

®
®

Destination

Example Network Overview

Example Network Overview

ission time over

15

10

10

10

20

X,y

Example Network Overview

CW = Worst case transmission time over X,y

1,15 ry

\

1,15
4,10

12,25

cgy = Typical transmission time over X,y

Example Network Overview

C = Worst case transmission time over x,y

15

Example Network Overview

CW = Worst case transmission time over X,y

15 vy

Deadline

Example Network Overvie

Deadline

Example Network Ove rV| 1€

Deadline

Example Network OV FV| €y

Deadline

Fxample Network Overvie

Deadline

Example Network Overvie

Deadline

CXamp le Network OV FVI e

The Beginning

— —

/////’//"// - /,//

Sanjoy
mcurrent\ trving tO learn
Y Vhe: your talk | felt

Very interestin talk. 1@
Reinforcemen learning (RL). when | heard
\ many similanties between what you are doing and
and g-learning in RL. There might be an

policy learning .
\ interesting connection.

Previous work [1]

15

\ 15
10

° b

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

x 10 5220
10 25

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Previous work [1]

715 Edgeé) Dp

....................................

Edgeé %) Dp '
x i 10 | >20
10 25

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Previous work [1]

....................................

s Drawbacks

' ® Huge tables for large number of nodes and edges

Edgeé %) Dp '
x i 10 | >20
10 25

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Previous work [1]

715 Edgeé) Dp

....................................

s Drawbacks

' ® Huge tables for large number of nodes and edges

® Recalculate table for every change

Edgeé %) Dp '
x i 10 | >20
10 25

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Previous work [1]

el 0 | Dp
1 5215
Our solution?
Edge o 5 D,
S A 6. | 3 >10
_______ Z 2
t { 10 {[10,20)
19
710 710 ,10

Edgeé %) Dp '
x i 10 | >20
. 25

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

Previous work [1]

|

|

Our solution?
Use Reinforcement Learning

Edge o

y 6
LEIo2
t 10

YOU GET A MACHINE LEARNING

DT

EVERYONE GETS A
s MACHINE LEARNING
b

Edge %) Dp ' .
x | 10 | >20 ez
. . ,29

G ; ‘, 3;. f-‘._'_',l"'j.".‘.‘x' - \
. T '- e g <_V.A A \ l “ |
- \ ; O '
“ AL oo L — i

[1] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Sys ssee——mm—m—

Reinforcement Learning

» Branch of machine learning that is unsupervised

Reinforcement Learning

» Branch of machine learning that is unsupervised

» Agent teaches itself how to behave by trial and error in
episodic manner

Reinforcement Learning

» Branch of machine learning that is unsupervised

» Agent teaches itself how to behave by trial and error in
episodic manner

» Learns to maximise a reward returned by the environment

Stote & Reward

Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

® Finite set of states (S)

Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

® Finite set of states (S)

® Finite set of actions from each state (A)

Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

® Finite set of states (S)

® Finite set of actions from each state (A)

® Probability of transition from one state to another (P)

Reinforcement learning

» The routing problem can be formalised as a Markov

Decision Process (MDP) consisting of:

® Finite set of states (S)

-inite set of actions from each state (A)

Probability of transition from one state to another (P)

Rewards from each state (R)

Reinforcement learning

» The routing problem can be formalised as a Markov
Decision Process (MDP) consisting of:

® Finite set of states (S)
® Finite set of actions from each state (A)

® Probability of transition from one state to another (P)

® Rewards from each state (R)

» In our state space, we encode the current vertex and total
time elapsed from the beginning

State-Space Example

» Consider a scenario with :-
® Source node i, destination node t

® Maximum admissible time, Dy = 25

15

BIOIOO6(6I6I6IOI6IOIOIOIOIGI6I6IOIGIOIIGII0I0I6
@@E@OOO@@REOOD@@O@EE®EOE®O®EO®®®E®
HHIHOBIBSOBIOEOEOSIBIEEOIOOISIOIOIOIOIOION0
HEOOOOOOHEODOEOOOOO®O®OO®O®O®E®E®
BPEOO@OPPYEEP@PROE®O®EOWEEEEE

1,15

Unsafe States

16666I66IOIO6I6IGIOIOIOIOIOIOIOIOI6I6I6

1,15
15

BIOIOO6(6I6I6IOI6IOIOIOIOIGI6I6IOIGIOIIGII0I0I6
LTI T T T I TG IBIOI0I0I0I616161616
©0000O0000ORRERRIRR®®ERE®®®®E®®
LT T LT 066 666161616161610I6161616
O000000000000000000OYWHVYOLBE

1,15

Unreachable
states

@O@@@.QO@Q@.@@@QQO@Q@@@@@p
@C@@@CQC@Q@C@@@QQO@0@0@,@@0 f
@C@@@QQC@C@Q@@@QOQ@O@Q@@@0
@C@@@QCC@‘@C@@@CQO@Q@Q@@@@
000000000000 00000000OBOB®BE

1,15
15

BIOIO666I6I6IOI6IOI6IOIOIGI6I6IOIGIOIOIGIOI0I0C
POOOOPOOPOPOPOOPOOOOPPOEOO®IRO®®O®®
000000000 RERRERRR®®ERE®®®®E®®
@000 OOODOPPOOOO®O®®PDO®®®®
000000000000 00000000OBOB®BE

1,15

Dijkstras shortest path

» Versatile algorithm to find shortest path from starting to target node
in a weighted graph

Dijkstras shortest path

» Versatile algorithm to find shortest path from starting to target node
in a weighted graph

» Forms the basis of pre-processing stage

Dijkstras shortest path

» Versatile algorithm to find shortest path from starting to target node
in a weighted graph

» Forms the basis of pre-processing stage

» Gives the tightest deadline Dy that can be guaranteed over each link

15

Dijkstras shortest path

10 10

L
B F

N _

AN
) =~ _<5
. B -, ’ 3 P -
\ R, - _ R ~ o s skl o
. _ 7 (- Lo _posna g —o 2O o iy ~
~_ - -

Dijkstras shortest path

' Calculate shortest path from next
node to destination

Dijkstras shortest path

Reduced computation when run
from destination to source

Pre-processing phase

» Required irrespective of the algorithm used to provide
guarantees

Pre-processing phase

» Required irrespective of the algorithm used to provide
guarantees

» Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

Pre-processing phase

» Required irrespective of the algorithm used to provide
guarantees

» Uses Dijkstra's algorithm to find smallest delay that can be
guaranteed to the destination

» Calculated for each link in the network

Routing with safe reinforcement learning

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions

Thanks to the truncated state-space

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions

» Algorithm has two phases

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions
» Algorithm has two phases

® Pre-processing phase (Dijkstras algorithm)

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions
» Algorithm has two phases
® Pre-processing phase (Dijkstras algorithm)

® Run-time phase

Routing with safe reinforcement learning

» Chooses optimal path in dynamic environmental
conditions

» While ensuring never to violate deadline restrictions
» Algorithm has two phases

® Pre-processing phase (Dijkstras algorithm)

® Run-time phase

» The environment returns the reward after each episode

Routing with safe reinforcement learning

» Value iteration updates a value of being in a state,

improving future episodes

Routing with safe reinforcement learning

» Value iteration updates a value of being in a state,

improving future episodes
» Popular Methods
® Monte Carlo value estimation

® Temporal Difference(TD) Learning

Routing with safe reinforcement learning

» Value iteration updates a value of being in a state,

improving future episodes
» Popular Methods
® Monte Carlo value estimation

® Temporal Difference(TD) Learning

» Exploration using e-greedy approach

® Taking only safe edges ensures safe learning

Value Update

» Monte-Carlo Methods

Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce

Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce

» Temporal Difference(TD) Learning

® | earning without waiting for episode to end

Value Update

» Monte-Carlo Methods
® Useful but leads a lot of back-propagation.

® This increases messages in the network which we want to
reduce

» Temporal Difference(TD) Learning
® | earning without waiting for episode to end

® Special case TD(0) depends only on the value of current and next
state-action pairs

® O(s,a) = Q(s,a) + a- (R+ max(y Q(s',a’)) — Q(s, a))

Exploration

» c-greedy exploration gives stochastic convergence
guarantees

» Ensures that all feasible paths in the network will
eventually be explored

Run-time phase

» Run at every node when a packet arrives

Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values

® TD-Learning removes reward back propagation

Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions

Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do

if u = source node ¢ then
D, = Dp // Initialise the deadline for each episode
d;t = 0 // Initiliaze total delay for packet = 0

for each edge (u — v) do
if ¢y, > D, then // Unsafe Edge
P(ulv) =0
else if Q(u,v) = maz(Q(u,a € A)) then
P(ulv) = (1 —¢)
else
P(ulv) = €/(size(F — 1))
Choose edge (u — v) with P
Observe 0.,
61'15 += 5uv
D, =D, — 5uv
R = Environment Reward Function(v, d;;)
Q(u,v) = Value iteration from Equation
if v =1 then
DONE

e e T T e T e T e T = S = G S Gy S

Run-time phase

» Run at every node when a packet arrives
» Requires only current and next node Q-values
® TD-Learning removes reward back propagation

» Decentralised approach as each node makes its own decisions

Algorithm 1 Node Logic (u)

1: for Every packet do

2: if u = source node ¢ then

D, = Dp // Initialise the deadline for each episode
d;+ = 0 // Initiliaze total delay for packet = 0

———————————

_derCach edge (u — v) do -~
if ¢y, > D, then // Unsafe Edge
P(ufv) =0
else if Q(u,v) = maz(Q(u,a € A)) then
Pufv) = (1 —¢)

else

13: Observe 5% N
14: 0it += Ouw
15: D,=D, — 5uv

16: R = Environment Reward Function(v, d;;)
17: Q(u,v) = Value iteration from Equation
18: if v =1 then

19: DONE

Reward Function

» Reward assigned by the environment
» At the end of every episode/packet transmission

» Propagates to other nodes through TD(0)

Algorithm 1 Environment Reward Function(v, d;;)

1: Assigns the reward at the end of transmission
2: 1if v = ¢ then

3: R=Dp — (5“

4: else

5 R=0

An Example. Dy, = 25
 Episode | Path | TransmissionTime

An Example. D, =25

 Episode | Path | TransmissionTime

15,30

Episode 1 19,15

Destination
,20,25

An Example. D, =25

 Episode | Path | TransmissionTime

15,30

10,20

Both Paths Feasible

10,10 10,10

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12

15,30

Both Paths Feasible

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12

15,30

Episode 2 19,15

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12

15,30

10,20

Both Paths Feasible

10,10 10,10

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12
2 li, X, -] 4

15,30

Say Tx time =4

So, Remaining time,
new DF = 25-4 = 21

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12
2 li, X, -] 4

Say Tx time =4

So, Remaining time,
new DF = 25-4 = 21

110,20

2525

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12
2 li, X, 1] 14

10,20

Say Tx time =10
, 10,20

2525

An Example. D, =25

1 [i, t]
2 [i, X, 1]
15,30
\
110,20

Current Best Path

110,20 10,10

An Example. D, =25

 Episode | Path | TransmissionTime

1 i, 1] 12
2 li, X, 1] 14

15,30

15,15

An Example. Dy, = 25
 Episode | Path | TransmissionTime

1,15,15

1,10,20 1,10,10

12,25,25

An Example. Dy, = 25
 Episode | Path | TransmissionTime

1,15,15

1,10,20 1,10,10

12,25,25

An Example. Dy, = 25
 Episode | Path | TransmissionTime

— 1,15,15
1,10,20 10,10,10

12,25,25

An Example. D, =25

1 [i, t]
2 [i, X, t]

3 [i, X, ¥, 1]

New Best Path

An Example. D, =25

 Episode | Path | TransmissionTime

1

2
3
4

,10,20

[i, 1]
[i, X, t]
[i’ X’ y’ t]
[i’ X’ y’ t]
, 15,30

\

10,20

10,10 10,10

2525

12
14
10
10

Choose best path with
higher probability for
future transmissions

15,15

Fvaluation

» Implemented using NetworkXI"
» Python graph generator package

» Compare our algorithm to Rapid Routingl? and classical RL

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using NetworkX”

[2] S. Baruah, “Rapid routing with guaranteed delay bounds,” in 2018 IEEE Real-Time Systems Symposium (RTSS) , December 2018

http://conference.scipy.org/proceedings/SciPy2008/paper_2/

| peadne | Path No Variance Tx Time

1,15,15
1,10,20

12,25,25

| peadne | Path No Variance Tx Time

1,15,15 1,15,15

1,10,20 1,10,20

12,25,25 12,25,25

| peadne | Path No Variance Tx Time

1,15,15 1,15,15

1,10,20 10,10,10 1,10,20

1,15,15
1,10,20

12,25,25 12,25,25 12,25,25

| peadine | Ppath No Variance Tx Time

1,15,15 1,15,15 1,15,15

1,10,20 1,10,20 1,10,20

12,25,25 12,25,25 12,25,25

DF = 35
1,15,30

1,10,20

12,25,25

| peadine | Ppath No Variance Tx Time

1,15,15
1,15,15 1,15,15

1,10,20
1,10,20 1,10,20

12,25,25 12,25,25 12,25,25

1,15,30 1,15,30

1,15,15
1,10,20

15,15

1,10,20

12,25,25 12,25,25

Experiment 1: No Variance. é =,

» No Variance in the typical transmission times

Experiment 1: No Variance

» No Variance in the typical transmission times

» Paths taken by both Rapid Routing and Safe RL converge to the
same

Experiment 1: No Variance

» No Variance in the typical transmission times

» Paths taken by both Rapid Routing and Safe RL converge to the
same

» Average delays are slightly higher for Safe RL due to exploration

Table 1: Optimal Path for Different Deadlines
Dr Optimal Path Delays, Rapid Routing Average Delays (1000 episodes)

15 Infeasible - -

20 fix,t) 14 14
25 {ixyt) 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64

40 {i,x,z,t} 6 6.55

Experiment 1: No Variance. 6 = ¢/,

Transmission Time

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

x Classical RL * Rapid Routing O Safe RL
Deadline Dgp = 20

\ \ \
© | - 1 [T |
\ \ \
Deadline Drp = 25
\ \ \
& |
\ \ \
Deadline Dr = 30
\ \ \
@]
\ \ \
Deadline Dr = 35
I B R P [O E T D
b |
I \ \ \
Deadline Dr = 40
T T \ - I T
b |
I \ \ \ \ \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500

Packet / Episode No.

Experiment 1: No Variance. 6 =

Transmission Time

40

x Classical RL * Rapid Routing O Safe RL
Deadline Dgp = 20

I
C Xy

30
20

107

0

40

30
20

10 %

0

40
30
20

10 ¢

0
40

30
20
10

0

40

30

\ \ \ \
150 200 250 300 350
Packet / Episode No.

\
400

500

Experiment 1: No Variance. 6 =

x Classical RL * Rapid Routing O Safe RL

Transmission Time

40

Deadline Dgp = 20

T

30 |-
20 |
10T

0

40

30
20
10 %

0

40
30
20
1 () @ssmossosmsasioSecs

0

40
30

20
10 Psomso ><

0
40

30 |-

\ \ \
200 250 300
Packet / Episode No.

\
350

\
400

Converges to the best
path for all deadlines

Experiment 1: No Variance. 6 =c¢

x Classical RL x Rapid Routing O Safe RL
Deadline Dgp = 20

40
30
20 |

0 | | | | |
Deadline Dgp = 25
40 w w w N

30 |-
20
10

0

40
30
20

0

40
30
20 | | |
10

Transmission Time

...

20 Classical RL takes unsafe path
RR choses the path according to
tabie

...

l l
150 200 250 300
Packet / Episode No.

Experiment 1: No Variance. 6 =c¢

x Classical RL x Rapid Routing O Safe RL
Deadline Dg

Safe RL converges to RR path after
enough episodes

|
Deadline Dg

Transmission Time

i 1 1 C
0 50 100 150 200 250 300 350 400 450 500

Packet / Episode No.

Experiment 1: No Variance. 6 =

Transmission Time

40
30
20

10|

0

40
30
20
10

0

40
30
20

10 s

0

40
30
20

0

40
30
20

10 2%

x Classical RL * Rapid Routing O Safe RL

Deadline Dgp = 20

Deadline Drp = 25

100

W
150

\ \ \
200 250 300
Packet / Episode No.

\
350

=
400

Videos 1 and 2

Experiment 2: Congestion on link

» Tests the adaptability of our algorithm

» Simulate congestion of network

» At episode 40, ¢! = 10 instead of ¢/ = 4

15

Experiment 2: Congestion on link

» Tests the adaptability of our algorithm

» Simulate congestion of network

» At episode 40, ¢! = 10 instead of ¢/ = 4

15

Experiment 2: Congestion on link.

Transmission Time

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

40
30
20
10

0

x Classical RL * Rapid Routing O Safe RL
Deadline Dgp = 20

\ \ \
e | [- 1 [7 T |
\ \ \
Deadline Dr = 25
\ \ \
¢ |
\ \ \
Deadline Dg = 30
\ \ \
® —
\ \ \
Deadline Dr = 35
I B R P [O E T D
b |
I \ \ \
Deadline Dr = 40
T T \ - I T
b |
I \ \ \ \ \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500

Packet / Episode No.

Experiment 2: Congestion on link

x Classical RL * Rapid Routing O Safe RL

Deadline Dgp = 20
40 \ | |

30 N

D) b -=—— === === — - Mo ———————— i ————————————————————————————————— -

10%&3 A
0 | | |

40 \ \ \

30
20 [x x .
10 £

0
40 \ \ |

e U L S e S -
20 |- XXX X X —

Transmission Time
%
X

Deadline Dr = 40
40 T T \ - I T

\ \ \ \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500
Packet / Episode No.

Experiment 2: Congestion on link

x Classical RL * Rapid Routing O Safe RL

Deadline Dgp = 20
40 | | |

2 O i — R I R S R R R R KR KKK R LK AKIAK R KRR TR AL RLN R R K T R S KR R K K R R S KRR HXH IR

»
A S S N A 00 A A AN A AN
R S 8% OBBORER8R0808008080080880800808088% O oo
1 O \/.\/’\' |

O | | |

40 | | |
30 [.
20

O | | | |
Deadline D = 30
40 i I i

30
20
10 oy P s

1 1 1

0
Deadline Dr = 35
40 | | |

30 IR A R R R I S B R DR
20 X "

1 O q 000
O T&W l l l l

Deadline Dr = 40
40 T T [- I T

Transmission Time

| | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Packet / Episode No.

Experiment 2: Congestion on link

= 20

{ {

x Classical RL x Rapid Routing O Safe I e When DF=20’ the only SE path IS
Deadline Dg

[i,x,t], results in higher tx times

RR doesn’t consider disturbance as

its based on static tables.

One way to mitigate it is to redo the
pre-processing/tables

I O l t\ l l l
g | Deadline Drp = 30
= 40 | | | |
2

. B RO KAXRREA FAPRRS R

ZH | | | |
“' Deadline Dr = 35
[l
|

vvv

l l l l
200 250 300 350 400

Packet / Episode No.

|
450

Experiment 2: Congestion on link

Transmission Time

40
30
20

10 (T

0

40
30
20

10 8

0

40
30
20

't
CES
AN
Vo

0

x Classical RL * Rapid Routing O Safe RL
Deadline Dgp = 20

l l l

Deadline D = 30

| | |

Deadline Dr = 35

Deadline Dr = 40

T T N il [

| | | | | |
100 150 200 250 300 350
Packet / Episode No.

| |
400 450 500

Video 3

Transmission Time

oDp = 20

oDp = 25

40
30
20
109

Experiment 3a: Truncated Normal

ODF = 30

Variance = 1 _

ODF = 35

] X X X

e o o o o e e s e o o e

Distribution

ODF = 40

40
30
20
109

Variance = 2

] X X X

e o o o o e e s e o o e

40
30
20
109

e o o o o e e s e o o e

40
30
20
10

e o o o o e e s e o o e

40
30
20
10¢

e o o o o e e s e o o e

1000 0
Packet / Episode No.

Transmission Time

—xperiment 3a: Truncated Normal Distribution

ODF:20 ODF:25 ODF:3O ODF:35 ODF:40

Variance = 1

PEIBN

SN
o
W) ir/ AN

AN
Qi
I\

~C)
B

XAk S YRN A 7y
YA TRSENRN) (N
RO EIORD

Packet / Episode No.

Transmission Time

Experiment 3b: Uniform Distribution

ODF = 40

oDp = 20

oDp = 25

40
30
20
109

0

ODF = 30

Variance = 1 _

ODF = 35

] X X X

e o o o o e e s e o o e

40
30
20
109

0

Variance = 2

] X X X

e o o o o e e s e o o e

40
30
20 |
10
0

e o o o o e e s e o o e

40
30
20
10¢
0

e o o o o e e s e o o e

40
30
20
10

0

e o o o o e e s e o o e

1000 0

1000 0
Packet / Episode No.

ime

T

1Ss1on

Transm

Experiment 3b: Unitform Distribution
oDp = 20 oDp = 25 oDr = 30 oDr = 35 o Dr = 40

Variance = 1

40
30

L) AN AT DT
Sy DAL,
®
D

a2 SCRAITI A A
= @D DA 2 D

R0 S?
L) KTARS ¢
A,)‘-\(.\:‘»%;%,
O RRHRO0) [T

v
= N
(e =

Packet / Episode No.

Experiment 4: WC-Uniform Distribution. 0 <8 < ¢

Transmission Time

40
30
20
10

40
30
20
10

40
30
20
10

40
30
20
10

40
20

Packet / Episode No.

x Classical RL * Rapid Routing o Safe RL
Dr = 20
| | | |
S A [R A S -
i | | | |
Dr = 25
| | | |
C 1 1 &]
) | | | |
Dr = 30
| | | |
i I 1 ¢ |
k
| | | |
Dr = 35
I P S e P
3 1T O] |
| | | |
Dr =40
T 1 |] | T
| n < . - .
0
|1 | | | | | | |
0 500 10000 500 10000 500

1000

Y

%4
C Xy

. 0< o<

10N

WC-Uniform Distribut

Experiment 4

o Sate RL

* Rapid Routing
Dr = 20

x Classical RL

D

g

)

q

Dr = 25

Dr =40

9WII], UOISSTWISURIT,

500

500 10000 500 1000

Packet / Episode No.

10000

Experiment 4: WC-Uniform Distribution. 0 <8 < ¢

Y
x Classical RL * Rapid Routing o Safe RL
&]
0} |
) - |
=
-
- e]
2
% | —]
N 0
s D |
n
-
=
= I R R SR R
0} |
T
0} -
' | 1| |
10000 500 1000

Packet / Episode No.

Experiment 4: WC-Uniform Distribution. 0 <6 < cyy’

x Classical RL * Rapid Routing o Safe RL

R
e

1me

T

1SS101

¥
a4\
G

Transm

S S R i O ol B0 RIS
0 500 10000 500 10000 1000
Packet / Episode No.

Video 4

Experiment 5: Large Networks

Transmission Time

100
80
60
40

100
80
60
40
20

Conventional Learning

Average Delay (smoothed) - --- Deadline (smoothed)

Rapid Routing

Average Delay (smoothed) - --- Deadline (smoothed)

Safe Reinforcement Learning

Average Delay (smoothed) ---- Deadline (smoothed)

50 100 150 200 250 300 350 400 450
Number of Nodes in the Network

500

Experiment 5: Large Networks

Transmission Time

100

100
80
60
40
20

Conventional Learning

Average Delay (smoothed) - --- Deadline (smoothed)

Rapid Routing

Average Delay (smoothed) - --- Deadline (smoothed)

Safe Reinforcement Learning

Average Delay (smoothed) ---- Deadline (smoothed)

50 100 150 200 250 300 350 400 450
Number of Nodes in the Network

500

Experiment 5: Large Networks

Transmission Time

100

100
80
60
40
20

100
80
60
40
20

Conventional Learning

Average Delay (smoothed) - --- Deadline (smoothed)

Rapid Routing

Average Delay (smoothed) - --- Deadline (smoothed)

PO X Rk T RN E SV L A "/\I"’\/\,\f"\,\/\.,’\,\
v

N Vit

\ T — \ \ \ vv\ N \ \ \ i
Safe Reinforcement Learning
Average Delay (smoothed) ---- Deadline (smoothed)
\ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \
50 100 150 200 250 300 350 400 450 500

Number of Nodes in the Network

Experiment 5: Large Networks

100

Transmission Time
S
S

100
80
60
40
20

0

Conventional Learning

Average Delay (smoothed) - --- Deadline (smoothed)

Rapid Routing

Average Delay (smoothed) - --- Deadline (smoothed)
\ \ \ \ \ \ \

b

s~ LINAE ‘\,./‘_«“\l"*/\,'\\ [J\I/\\“ ~‘\/\I\"\I\4\”\/\/\-a’\/\
[V 4

—

~ r
\l'"\f,,\"\-/\v"/\\/\/\., \/ (U 04

N U N ——— = W R N et e A\
\ \ \ \ \ \ \ \

Safe Reinforcement Learning

Average Delay (smoothed) ---- Deadline (smoothed)
\ \ \ \ \ \ \
- - - Ll PN e e IS ’_‘-\/\/\ ~/~-\/~"’\""~\/~—*’\/£
7‘*/ wZ - N N L= ol = ~ - o e
\ \ \ \ \ \ \ \ \

0 50 100 150 200 250 300 350 400 450 500
Number of Nodes in the Network

Experiment 5: Computational time

—»— (Classical RL —— Rapid Routing —&— Safe RL

X

X X X X X

J J J J J

X

J

J

50

|
100

150 200 250 300 350
Number of Nodes in the Network

400

450 500

Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees

—»— C(Classical RL —— Rapid Routing —&— Safe RL
200 | | | | | | | | |

P SR VRV VS VRN VRN VI VS VS VS PV VS S P VI VS VLR VA VR CRR PV VR VI S VR VA VRV VI VIR PV Ve -
OO 50 100 150 200 250 300 350 400 450 500

Number of Nodes in the Network

Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees

» Rapid Routing needs to be rerun when typical tx time changes

—»— C(Classical RL —— Rapid Routing —&— Safe RL
200 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500
Number of Nodes in the Network

Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees
» Rapid Routing needs to be rerun when typical tx time changes

» Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

—»— C(Classical RL —— Rapid Routing —&— Safe RL
200 | | | | | | | | |

150 - N

100 - N

Timels]

50 |- n

- B AN -

-
A OO

NS NS
a -
O . . N 5 X RS A3 O O = N
Y Y R J = = - -

0 50 100 150 200 250 300 350 400 450 500
Number of Nodes in the Network

Experiment 5: Computational time

» Classical RL has low complexity (ms), but doesn't provide guarantees
» Rapid Routing needs to be rerun when typical tx time changes

» Most complexity of safe RL comes from pre-processing stage. Run only once
during network creation

—»— (Classical RL —— Rapid Routing —&— Safe RL

| | | | | | |
10% E
10t p E
A2, i S <Ak .
Q B - = - e |
g i '55‘ -
H 1OO§ ’%‘ g
WPV - 2 .

& |

1071 E

- | | | | | | | | | B

0 50 100 150 200 250 300 350 400 450 500
Number of Nodes in the Network

Conclusion

» Applied reinforcement learning to routing over real-time networks

Conclusion

» Applied reinforcement learning to routing over real-time networks

» Augmented state-space allows safe exploration

Conclusion

» Applied reinforcement learning to routing over real-time networks
» Augmented state-space allows safe exploration

» Constant adaptation to changes in typical transmission time

Conclusion

» Applied reinforcement learning to routing over real-time networks
» Augmented state-space allows safe exploration
» Constant adaptation to changes in typical transmission time

» Compared to classical RL, our algorithm is robust and does not
violate any deadlines

Conclusion

» Applied reinforcement learning to routing over real-time networks
» Augmented state-space allows safe exploration
» Constant adaptation to changes in typical transmission time

» Compared to classical RL, our algorithm is robust and does not
violate any deadlines

» Compared to previous work, our algorithm
e Adapts online to changes in typical transmission time

® |s |ess computationally intensive

Future Work

Future Work

» Implement on a network emulator

® Thank you Alex for pointers.

Future Work

» Implement on a network emulator
® Thank you Alex for pointers.

» Investigate probability propagation through network

Future Work

» Implement on a network emulator
® Thank you Alex for pointers.
» Investigate probability propagation through network

» Is there anyway to guarantee safety it loops are present in
the network?

200

150

100

Timel[s]

50

x Classical RL « Rapid Routing O Safe RL
Deadline Dp = 20

Transmission Time

—»— Classical RL —x— Rapid Routing —&— Safe RL

100

8o o o o O OO0~ %

-2 > % |
150 200 250 350 400

Number of Nodes in the Network

|
450

500

T i i i
4 i

Transmission Time

\
100

\
150

| | | | | |
200 250 300 350 400 450

500
Packet / Episode No.
Conventional Learning
Average Delay (smoothed) - --- Deadline (smoothed)
100 T T T \ \ T T
80 |- -
60
40
20
0
Rapid Routing
Average Delay (smoothed) - - - - Deadline (smoothed)
100 T T T T T T T
80 - n
ig hPRY ’—\,,\'\,./‘vw\\,\/\,,'"‘-""\/"’~"«\""""\I”\l’~~‘_,\,~"’\’"‘1\.—4\,\1\,’\;
20 | oA AR R
0 | | | | | | | | |
Safe Reinforcement Learning
Average Delay (smoothed) - -=-- Deadline (smoothed)
100 T T T \ \ T T
80 |- -
60 - n
40 st Dt bl ot Sl A DL e G L e PR SR e SN s L L R
20 —WWW—\/\/J\N\/\'J\:
0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Number of Nodes in the Network

mailto:gautham@control.lth.se

