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The Optimal Controller Structure

[Mirkin 2017]: Optimal controller structure can be represented as
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The Optimal Sampling Policy

Opt. cost J and value function V (x̃)
satisfy [Henningsson 2012]:

Free Boundary PDE:

x̃ᵀQx̃ + x̃ᵀA∇V + 1

2
Tr(R∇2V ) ≥ J ,

ρ+V (0)−V (x̃) ≥ 0,

(with equality in at least one ∀x̃ )

Optimal policy:

Sample when ρ+V (0)−V (x̃) = 0

ρ

Optimal
Threshold?

x̃1
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Other Examples of Free Boundary Problems

Heat diffusion with
phase-transition ("Stefan
problem")

Biological modeling, e.g.
tumor growth and wound
healing.

Valuation of American-style
options. (find policy with
largest expected payoff)



Previous Results

Special case for A=0 [Henningsson 2012]:

V (x̃) =−1

4
max(2

p
ρ− x̃ᵀP x̃,0)2 (1)

where PÂ 0 satisfies: PRP + 1

2
Tr(RP )P =Q (2)

Equation (2) solved by simple scalar search [Andrén et.al 2017]
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Previous Results

Finite-difference method for A6=0 [Andrén et.al 2017]:

1 Assume time-dependent version of
PDE, and pick an initial V

2 Grid state space and time.
3 Time-step using finite-difference
4 Enforce inequality on V each step
5 Run until stationary
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Drawbacks

1 Gridding =⇒ only suitable for low-dimensional problems
2 Convergence time depends on initial guess of V

3 Time-discretization introduces errors
4 Hard to say when "stationarity" is reached.
5 Solution only available on pre-defined mesh



Part II: Solution using RBF’s and linear complementarity



Radial Basis Functions

Approximation:

V̂ =
n∑

j=1
α jφ(x̃ − x̃ j )

Many choices of φ exist.
Here we use Gaussian:

φ(x̃ − x̃ j ) = exp(−c‖x̃ − x̃ j‖2)
V̂

x̃ j−1 x̃ j x̃ j+1

0



Using the RBF Approximation

1. Set V (0) =−ρ, and re-scale system s.t R = I .

The free boundary PDE can be written as:

−V × (x̃ᵀQx̃ − J + x̃ᵀAᵀ∇V + 1

2
∆V ) = 0, (3)

s.t −V ≥ 0, (x̃ᵀQx̃ − J + x̃ᵀAᵀ∇V + 1

2
∆V ) ≥ 0 (4)

2. Insert V̂ =∑
j α jφ(x̃ − x̃ j )

−(
∑

j
α jφ(x̃ − x̃ j ))× (x̃ᵀQx̃ − J +

N∑
j=1

α j (Ax̃ + ∇
2

) ·∇φ(x −x j )) = 0.

s.t (4) holds using V̂
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Using the RBF Approximation

3. Enforce PDE at the collocation points {x̃}n
j=1:

(−Φα)ᵀ(Γα+β) = 0,

s.t −Φα≥ 0, Γα+β≥ 0

α= [
α1, ...,α j , ...αn

]ᵀ
, β ∈Rn , Φ,Γ ∈Rn×n ,

β j = x̃ᵀ
j Qx̃ j − J ,

Φi , j =φ(x̃i − x̃ j ),

Γi , j = (Ax̃i + ∇
2

) ·∇φ(x̃i − x̃ j )

4. Solve for α!
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A Linear Complementarity Problem

Putting z =−Φα and M =−ΓΦ−1 gives

s.t z ≥ 0, M z +β≥ 0.

Proof of existence of unique solution for this particular LCP

Use any solver which handles QP’s, e.g Gurobi, OSQP.jl,
ProximalOperators.jl...
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Part III: Some numerical results, and future work
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3D, A=0

n = 253 = 15,625, ‖V − V̂ ‖∞ = 3.1×10−4



3D, A6=0
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Future Work

Refinements of method
Estimates of error and convergence
"Stable" RBF methods to counter bad conditioning
Compact support of RBF’s, introduce spartsity

Optimal policy as benchmark for (simpler) heuristic policies

Networked control system setup
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