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This Talk

@ Part I: Background on optimal event-based sampling
@ Part II: Solution using RBF’s and linear complementarity
@ Part lll: Some numerical results, and future work
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@ Controller structure (sampler, discrete controller, signal generator)
@ Sampling policy (event-generator)
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The Optimal Sampling Policy
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The Optimal Sampling Policy

Opt. cost J and value function V(x)
satisfy [Henningsson 2012]:

Free Boundary PDE:
1
FTQx+XTAVV + 5Truw2 V)=,

p+V(0)-V(x) =0,
(with equality in at least one VX )
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The Optimal Sampling Policy

Opt. cost J and value function V(x)
satisfy [Henningsson 2012]:

Free Boundary PDE:
1
FTQx+XTAVV + 5Truw2 V)=,

p+V(0)-V(x) =0,
(with equality in at least one VX )

Optimal policy:
Sample when p+V(0)-V(x) =0
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Other Examples of Free Boundary Problems

@ Heat diffusion with
phase-transition ("Stefan
problem")

@ Biological modeling, e.g.
tumor growth and wound
healing.

@ Valuation of American-style
options. (find policy with
largest expected payoff)




Previous Results

Special case for A=0 [Henningsson 2012]:

V(%) = —imaX(Z\/ﬁ—chPfc,O)z (1)

1
where P> 0 satisfies: PRP + ETr(RP)P =Q (2)

Equation (2) solved by simple scalar search [Andrén et.al 2017]
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Drawbacks

@ Gridding = only suitable for low-dimensional problems
@ Convergence time depends on initial guess of V

@ Time-discretization introduces errors

© Hard to say when "stationarity” is reached.

@ Solution only available on pre-defined mesh



Part II: Solution using RBF’s and linear complementarity



Radial Basis Functions

Approximation:

V=) ajp-%)
j=1

Many choices of ¢ exist.
Here we use Gaussian:

¢(% - %)) = exp(—cll% - %;1%)
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1. Set V(0) = —p, and re-scale system s.t R=1.
The free boundary PDE can be written as:

1
—Vx (& Qx-J+XTATVV + SA =0, (3

1
st —-V=0 (X'Qx-J+xTATVV+ EAV)zO (4)

2. Insert V=Y ;a;¢(x- %))

ul %
> @j(A%+2)-Vplx—x)) =0.

—Q_ajp(x—x)) x (XTQx—J +
J j=1

s.t (4) holds using V




Using the RBF Approximation

3. Enforce PDE at the collocation points {55}7:1:

(-®a)"Ta+p) =0,
st —®a=0, Ta+B=0

a=[a,..aj..ay]’, BeR", ®TeR™"




Using the RBF Approximation

3. Enforce PDE at the collocation points {55}7:1:

(-®a)"Ta+p) =0,
st —®a=0, Ta+B=0

a=[a,..aj..ay]’, BeR", ®TeR™"
_ 2T %.

ﬁj_ijx]_]’

D; ;= P(X; — X)),

\%
T j= (A% +2)-VO(%; — &j)




Using the RBF Approximation
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4. Solve for a!
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A Linear Complementarity Problem

Putting z = —®a and M = -T'®~! gives

Quadratic Program:

min z'(Mz+ ),
Z

stz=0, Mz+p=0.

@ Proof of existence of unique solution for this particular LCP

@ Use any solver which handles QP’s, e.g Gurobi, 0SQP. j1,
ProximalOperators.jl...
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Putting z = —®a and M = -T'®~! gives

Quadratic Program:
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