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Problem Statement - Motivation

Covariance Steering for Stochastic Linear Systems

Control of Stochastic Systems

Controlling the distribution of
trajectories over time

Steering the mean and the
covariance to the desired
terminal values

Dates back to Hotz & Skelton

Recently finite horizon results
are available

Problem: All available results
assume Gaussian distribution.

Research - Contributions

1 Handle covariance steering for arbitrary distributions
satisfying moment based ambiguity sets.

2 Develop DR iterative risk allocation for both
polytopic & convex conic state risk constraints.

1
Papers:

A. Hotz & R. E. Skelton, “Covariance control theory”, International Journal of Control, 1987.

J. Pilipovsky & P. Tsoitras, “Covariance Steering With Optimal Risk Allocation”, IEEE Transactions on Aerospace and Electronic Systems, Dec 2021.
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Covariance Steering (CS) Problem

Stochastic LTV Dynamics

xk+1 = Akxk +Bkuk +Dkwk, k = 0 : N − 1

Pw = {Pw | mean = 0, cov = Σw}

Boundary Conditions (BCs) & Cost

Px0 = {Px0 | mean = µ0, cov = Σ0}
PxN = {PxN | mean = µf , cov = Σf}

J(U) = E
[
X⊤Q̄X+U⊤R̄U

]

Main Objective

The objective is to steer the trajectories of
system in N time steps from x0 ∼ Px0 ∈ Px0

to xN ∼ PxN ∈ PxN with wk ∼ Pw ∈ Pw.

Probabilistic State Constraint

X := {xk |
M⋂
i=1

a⊤i xk ≤ bi}.

Distributionally Robust (DR) risk constraint.

sup
PX∈PX

PX

(
N∧
k=0

xk /∈ X

)
≤ ∆,

where ∆ ∈ (0, 0.5] is the total risk budget.

CS Problem Statement

min
U

J(U)

s.t. Dynamics, BCs,

DR Risk Constraint.
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Propagation of Mean & Covariance

Using the concatenated variables, dynamics can be written as

X = Ax0 + BU+DW,

We adopt the following control policy

U = V +KY, where Y = A (x0 − µ0)︸ ︷︷ ︸
:=y0

+DW

=⇒ Ȳ = E[Y] = E[Ay0 +DW] = 0, and

=⇒ ΣY = AΣ0A⊤ +DΣWD⊤,

Here, the control component V steers the mean and K steers the covariance. Then, the mean
and covariance of concatenated system state are given by

X̄ = Aµ0 + BV,
ΣX = (I + BK)ΣY(I + BK)⊤

=⇒ J(V,K) = X̄⊤Q̄X̄+ Ū⊤R̄Ū︸ ︷︷ ︸
:=Jµ

+ tr
(
Q̄ΣX + R̄ΣU

)︸ ︷︷ ︸
:=JΣ

.
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Relaxing Boundary Conditions

Note that the initial and the terminal state moments can be expressed as follows

µ0 = E0X̄, Σ0 = E0ΣXE0, and

µf = ENX̄, Σf = ENΣXEN .

To convexify the problem, we relax the terminal covariance constraint as Σf ⪰ ENΣXEN and
subsequently reformulate it as LMI using the Schur complement as[

Σf EN (I + BK)Σ
1
2
Y

Σ
1
2
Y(I + BK)⊤E⊤

N I

]
⪰ 0.

Problems with DR Risk Constraint supPX∈PX PX

(∧N
k=0 xk /∈ X

)
≤ ∆

1 It is a joint DR Risk Constraint

2 It is an infinite dimensional constraint

6 / 16



Prob 1: Joint DR Risk Constraint =⇒ Individual Risk Constraint

Assume the state constraint X to be convex polytope & apply Boole’s inequality

sup
PX∈PX

PX

(
N∧
k=0

xk /∈ X

)
≤ ∆ ⇐⇒ sup

PX∈PX

PX

(
N∧
k=1

M∧
i=1

a⊤i xk > bi

)
≤ ∆

⇐⇒ sup
Pxk

∈Pxk

Pxk

(
a⊤i EkX > bi

)
≤ δi,k, and

N∑
k=1

M∑
i=1

δi,k ≤ ∆.

Figure: The original state constraint to the left and the loosened one on the right is shown here.
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Probability of Constraint Violation

Gaussian Case

P[x ≤ b] = P[x̄+
√

Σxz ≤ b] = P
[
z ≤ b− x̄√

Σx

]
= Φ

(
b− x̄√
Σx

)
≤ δ ⇐⇒ x̄ ≥ b−

√
ΣxΦ

−1(δ)

With Cantelli’s Inequality: supPz
Pz

[
z ≥ b−x̄√

Σx

]
≤ 1

1+
(

b−x̄√
Σx

)2 ≤ δ ⇐⇒ x̄ ≤ b−
√
Σx

√
1−δ
δ
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Prob 2: Deterministic Constraint Tightening (Gaussian vs DR)

The Gaussian Case (when PX is Gaussian) Using CDF of Normal Distribution

PX

(
N∧
k=1

M∧
i=1

a⊤i xk > bi

)
≤ ∆ ⇐⇒ a⊤i x̄k ≤ bi − Φ−1(δi,k)

∥∥∥∥Σ 1
2
Y(I + BK)⊤E⊤

k ai

∥∥∥∥
2

The Distributionally Robust Case Using Cantelli’s Inequality

sup
PX∈PX

PX

(
N∧
k=1

M∧
i=1

a⊤i xk > bi

)
≤ ∆ ⇐⇒ a⊤i x̄k ≤ bi −

√
1− δi,k
δi,k︸ ︷︷ ︸

:=Q(1−δi,k)

∥∥∥∥Σ 1
2
Y(I + BK)⊤E⊤

k ai

∥∥∥∥
2

The tightening constant for DR case is stronger than the Gaussian case for being robust
against arbitrary distributions in the set.

Smaller δ asks for a stricter (greater) tightening.

1
G.C. Calafiore & L.E. Ghaoui, “On distributionally robust chance constrained linear programs”, Journal of Optimization Theory and Applications, 130(1),

pp.1-22, 2006.

9 / 16



DR Iterative Risk Allocation (DR-IRA)

2-stage optimization framework

DR-IRA is a 2-stage optimization framework

The upper stage optimization finds the optimal risk allocation δ⋆

The lower stage solves the CS problem for the optimal controller U⋆ given the δ⋆

Lower stage optimization

The value of the objective function after the
lower stage optimization for a given risk
allocation δ be

J⋆(δ) := min
V,K

J(V,K).

Upper stage optimization

minimize
δ

J⋆(δ)

subject to
N∑
k=1

M∑
i=1

δi,k ≤ ∆,

δi,k > 0.

10 / 16



DR Iterative Risk Allocation (DR-IRA)

2-stage optimization framework

DR-IRA is a 2-stage optimization framework

The upper stage optimization finds the optimal risk allocation δ⋆

The lower stage solves the CS problem for the optimal controller U⋆ given the δ⋆

Lower stage optimization

The value of the objective function after the
lower stage optimization for a given risk
allocation δ be

J⋆(δ) := min
V,K

J(V,K).

Upper stage optimization

minimize
δ

J⋆(δ)

subject to
N∑
k=1

M∑
i=1

δi,k ≤ ∆,

δi,k > 0.

10 / 16



DR Iterative Risk Allocation (DR-IRA)

2-stage optimization framework

DR-IRA is a 2-stage optimization framework

The upper stage optimization finds the optimal risk allocation δ⋆

The lower stage solves the CS problem for the optimal controller U⋆ given the δ⋆

Lower stage optimization

The value of the objective function after the
lower stage optimization for a given risk
allocation δ be

J⋆(δ) := min
V,K

J(V,K).

Upper stage optimization

minimize
δ

J⋆(δ)

subject to

N∑
k=1

M∑
i=1

δi,k ≤ ∆,

δi,k > 0.

10 / 16



DR-IRA Procedure

True Risk δ̄i,k with (V⋆,K⋆)

δi,k ≥

1 +

 bi − a⊤
i EkX̄

⋆∥∥∥∥Σ 1
2
Y(I + BK⋆)⊤E⊤

k ai

∥∥∥∥
2


2

−1

=: δ̄i,k. (1)

Note: Constraint i is active if δi,k = δ̄i,k, otherwise inactive.

DR-IRA Procedure

1 Input: Uniformly allocated risk for all times and constraints defining X .

2 Output: J⋆, δ⋆,V⋆,K⋆.

3 Loop until cost J converges

Break the loop if all or no constraints is active
Given current risk, find the optimal control law V⋆,K⋆ and true risk δ̄i,k.
Tighten (reduce the feasible space) all the inactive constraints using δ̄i,k
Find the residual risk δres = ∆−

∑
k

∑
i δi,k

Loosen (increase the feasible space) all the active constraints using δres.
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Convex Cone DR State Constraints

Xc :=
{
x ∈ Rn | ∥Ax+ b∥2 ≤ c⊤x+ d

}
.

Relaxing Convex Cone DR State Constraints

Given δk ∈ (0, 0.5], ∀k ∈ [1, N ], the following DR quadratic risk constraint

sup
Pxk

∈Pxk

Pxk

[
∥Axk + b∥2 ≤ c⊤x̄k + d

]
≥ 1− δk

is a relaxation of the original DR conic risk constraint

sup
Pxk

∈Pxk

Pxk

[
∥Axk + b∥2 ≤ c⊤xk + d

]
≥ 1− δk.
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Satisfying DR quadratic constraints

For every time step k ∈ [1, N ], denote ψ := ∥Axk + b∥2 and κk := c⊤x̄k + d.

Two sided DR quadratic constraints

The DR quadratic constraint is satisfied if the following constraints are satisfied (subscript k
dropped for brevity of notation) for some non-negative f1, . . . , fn and β1, . . . , βn:

sup
Px∈Px

Px

[
n∑

i=1

|ψi| ≤ fi

]
≥ 1− βiδ, i = [1, N ],

n∑
i=1

f2i ≤ κ2,

n∑
i=1

βi = 1.
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Reverse Union Bound Approximation

Reverse Union Bound (RUB)

Let the events A1, . . . , An be such that P[Ai] ≥ δi for some δi ≥ 0,∀i = 1, . . . , n. Then,

P

(
n⋂

i=1

Ai

)
≥

n∑
i=1

δi − (n− 1). (2)

RUB based approximation of DR quadratic constraints

Let ϵ1i,k, ϵ
2
i,k > 0, ∀i = 1, . . . , n and k = 1, . . . , N . Suppose that the following convex DR SOC

constraints hold true for some V,K, and ϵ1i,k + ϵ2i,k ≥ 2− βiδk:

a⊤i EkX̄ ≤ fi,k − bi −

√√√√ ϵ1i,k
1− ϵ1i,k

∥∥∥∥Σ 1
2
Y(I + BK)⊤E⊤

k ai

∥∥∥∥
2

,

−a⊤i EkX̄ ≤ fi,k + bi −

√√√√ ϵ2i,k
1− ϵ2i,k

∥∥∥∥Σ 1
2
Y(I + BK)⊤E⊤

k ai

∥∥∥∥
2

.

Then the two-sided DR risk constraint holds true as well. 14 / 16



Simulation Results (100 Monte-carlo trials with CS)

Proximity spacecraft linear model: µ0 =

[
90

−120

]
,Σ0 = 0.1I2, µf = 0, and Σf = 0.5Σ0.

wt,∀t ∈ N sampled from multivariate Laplacian distribution.

Gaussian CS is straight as it exactly knows the probability of constraint violation

DR CS is curved as it optimizes for worst case probability of constraint violation

———DR case with ∆ = 0.05. ———Gaussian case with ∆ = 0.05.
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Conclusion

Summary

If distributions of primitive uncertainties (x0, noises) are non-Gaussian, the state
distributions evolve to be non-Gaussian.

If you ASSUME wrongly everything as Gaussian, it will lead to potentially severe
miscalculation of risks.

What next for future?

Extend the problem for “higher order moment steering” (start with first 4 moments)

Extend the problem setting to nonlinear systems
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