# Nonlinear Control and Servo Systems

#### **Anders Robertsson**

Dept. of Automatic Control Lund Institute of Technology

### **Today's Goal**

To be able to

prove local and global stability of an equilibrium point through Lyapunov's method



## **Today's Goal**

To be able to

- prove local and global stability of an equilibrium point through Lyapunov's method
- show stability of a set (for example, a limit cycle) through invariant set theorems



## **Material**

- Slotine and Li: Chapter 3
- Lecture notes



## Alexandr Mihailovich Lyapunov (1857–1918)





# Alexandr Mihailovich Lyapunov (1857–1918)



#### Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.



# Alexandr Mihailovich Lyapunov (1857–1918)



#### Master's thesis

"On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

#### Doctoral thesis

"The general problem of the stability of motion," 1892.



### Lyapunov's idea

If the total energy is dissipated, the system must be stable.



## Lyapunov's idea

#### If the total energy is dissipated, the system must be stable.

#### Main benefit

By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.



## Lyapunov's idea

#### If the total energy is dissipated, the system must be stable.

#### Main benefit

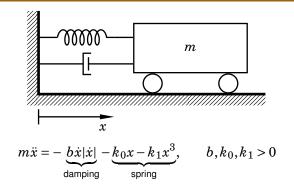
By looking at an energy-like function (a so called Lyapunov function), we might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

#### Main question

How to find a Lyapunov function?



## A Motivating Example



The energy can be shown to be

$$V(x, \dot{x}) = m\dot{x}^2/2 + k_0 x^2/2 + k_1 x^4/4 > 0,$$
  
$$\frac{d}{dt}V(x, \dot{x}) = m\dot{x}\ddot{x} + k_0 x\dot{x} + k_1 x^3 \dot{x} = -b|\dot{x}|^3 < 0,$$



### **Stability Definitions**

An equilibrium point x = 0 of  $\dot{x} = f(x)$  is

**locally stable**, if for every R > 0 there exists r > 0, such that

 $\|x(0)\| < r \quad \Rightarrow \quad \|x(t)\| < R, \quad t \ge 0$ 



### **Stability Definitions**

An equilibrium point x = 0 of  $\dot{x} = f(x)$  is

**locally stable**, if for every R > 0 there exists r > 0, such that

 $||x(0)|| < r \quad \Rightarrow \quad ||x(t)|| < R, \quad t \ge 0$ 

locally asymptotically stable, if locally stable and

 $||x(0)|| < r \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$ 



### **Stability Definitions**

An equilibrium point x = 0 of  $\dot{x} = f(x)$  is

**locally stable**, if for every R > 0 there exists r > 0, such that

 $||x(0)|| < r \quad \Rightarrow \quad ||x(t)|| < R, \quad t \ge 0$ 

locally asymptotically stable, if locally stable and

$$||x(0)|| < r \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$$

globally asymptotically stable, if asymptotically stable for all  $x(0) \in \mathbf{R}^n$ .



### Lyapunov Theorem for Local Stability

#### Theorem

Let 
$$\dot{x} = f(x)$$
,  $f(0) = 0$ , and  $0 \in \Omega \subset \mathbf{R}^n$ .

Assume that  $V:\Omega\to {\bf R}$  is a  $C^1$  function. If

$$\blacktriangleright V(0) = 0$$

then x = 0 is locally stable. Furthermore, if also

• 
$$\frac{d}{dt}V(x) < 0$$
 for all  $x \in \Omega, x \neq 0$ 

then x = 0 is locally asymptotically stable.

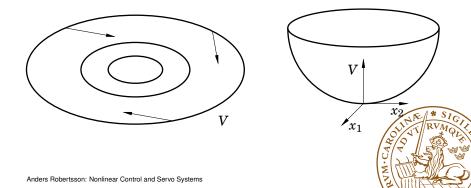
#### Proof: see p. 62.



#### Lyapunov Functions ( $\approx$ Energy Functions)

A Lyapunov function fulfills  $V(x_0) = 0$ , V(x) > 0 for  $x \in \Omega$ ,  $x \neq x_0$ , and

$$\dot{V}(x) = \frac{d}{dt}V(x) = \frac{dV}{dx}\dot{x} = \frac{dV}{dx}f(x) \le 0$$

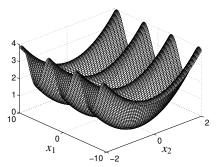


Show that the origin is locally stable for a mathematical pendulum.

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -\frac{g}{\ell}\sin x_1$$

Use as a Lyapunov function candidate

$$V(x) = (1 - \cos x_1)g\ell + \ell^2 x_2^2/2$$





Anders Robertsson: Nonlinear Control and Servo Systems

**Theorem** Let  $\dot{x} = f(x)$  and f(0) = 0. Assume that  $V : \mathbb{R}^n \to \mathbb{R}$  is a  $C^1$  function. If

- $\blacktriangleright V(0) = 0$
- ► V(x) > 0, for all  $x \neq 0$
- $\dot{V}(x) < 0$  for all  $x \neq 0$
- $V(x) \to \infty$  as  $||x|| \to \infty$

then x = 0 is globally asymptotically stable.

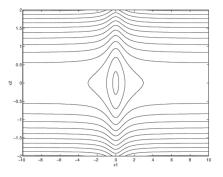


### **Radial Unboundedness is Necessary**

If the condition  $V(x) \to \infty$  as  $||x|| \to \infty$  is not fulfilled, then global stability cannot be guaranteed.

**Example** Assume  $V(x) = x_1^2/(1 + x_1^2) + x_2^2$  is a Lyapunov function for a system. Can have  $||x|| \to \infty$  even if  $\dot{V}(x) < 0$ .

Contour plot V(x) = C:





A matrix M is positive definite if  $x^T M x > 0$  for all  $x \neq 0$ . It is positive semidefinite if  $x^T M x \ge 0$  for all x.

A symmetric matrix  $M = M^T$  is positive definite if and only if its eigenvalues  $\lambda_i > 0$ . (*semidefinite*  $\Leftrightarrow \lambda_i \ge 0$ )

Note that if  $M = M^T$  is positive definite, then the Lyapunov function candidate  $V(x) = x^T M x$  fulfills V(0) = 0 and V(x) > 0 for all  $x \neq 0$ .



A symmetric matrix  $M = M^T$  satisfies the inequalities

$$\lambda_{\min}(M) \|x\|^2 \leq x^T M x \leq \lambda_{\max}(M) \|x\|^2$$

(To show it, use the factorization  $M = U\Lambda U^*$ , where U is a unitary matrix,  $||Ux|| = ||x||, U^*$  is complex conjugate transpose, and  $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n).$ )

For any matrix M one also has

$$\|Mx\| \leq \lambda_{\max}^{1/2}(M^TM)\|x\|$$



**Theorem** The eigenvalues  $\lambda_i$  of A satisfy  $\text{Re }\lambda_i < 0$  if and only if: for every positive definite  $Q = Q^T$  there exists a positive definite  $P = P^T$  such that

$$PA + A^T P = -Q$$

Proof of  $\exists Q, P \Rightarrow Re\lambda_i(A) < 0$ : Consider  $\dot{x} = Ax$  and the Lyapunov function candidate  $V(x) = x^T P x$ .

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (P A + A^T P) x = -x^T Q x < 0, \quad \forall x \neq 0$$

 $\Rightarrow \dot{x} = Ax \text{ asymptotically stable } \iff \operatorname{Re} \lambda_i < 0$   $Proof of \operatorname{Re} \lambda_i(A) < 0 \Rightarrow \exists Q, P: \operatorname{Choose} P = \int_0^\infty e^{A^T t} Q e^{At} dt$ 

## Lyapunov's Linearization Method

Recall from Lecture 2:

Theorem Consider

 $\dot{x} = f(x)$ 

Assume that x = 0 is an equilibrium point and that

$$\dot{x} = Ax + g(x)$$

is a linearization.

(1) If  $\operatorname{Re} \lambda_i(A) < 0$  for all *i*, then x = 0 is locally asymptotically stable.

(2) If there exists *i* such that  $\lambda_i(A) > 0$ , then x = 0 is unstable.